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Abstract

Objective—The purpose of this study is to describe the methodological innovations of a web-

based system for storage, integration and computation of biomedical data, using a training imaging 
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dataset to remotely compute a deep neural network classifier of temporomandibular joint 

osteoarthritis (TMJOA).

Methods—This study imaging dataset consisted of three-dimensional (3D) surface meshes of 

mandibular condyles constructed from cone beam computed tomography (CBCT) scans. The 

training dataset consisted of 259 condyles, 105 from control subjects and 154 from patients with 

diagnosis of TMJ OA. For the image analysis classification, 34 right and left condyles from 17 

patients (39.9 ± 11.7 years), who experienced signs and symptoms of the disease for less than 5 

years, were included as the testing dataset. For the integrative statistical model of clinical, 

biological and imaging markers, the sample consisted of the same 17 test OA subjects and 17 age 

and sex matched control subjects (39.4 ± 15.4 years), who did not show any sign or symptom of 

OA. For these 34 subjects, a standardized clinical questionnaire, blood and saliva samples were 

also collected. The technological methodologies in this study include a deep neural network 

classifier of 3D condylar morphology (ShapeVariationAnalyzer, SVA), and a flexible web-based 

system for data storage, computation and integration (DSCI) of high dimensional imaging, 

clinical, and biological data.

Results—The DSCI system trained and tested the neural network, indicating 5 stages of 

structural degenerative changes in condylar morphology in the TMJ with 91% close agreement 

between the clinician consensus and the SVA classifier. The DSCI remotely ran with a novel 

application of a statistical analysis, the Multivariate Functional Shape Data Analysis, that 

computed high dimensional correlations between shape 3D coordinates, clinical pain levels and 

levels of biological markers, and then graphically displayed the computation results.

Conclusions—The findings of this study demonstrate a comprehensive phenotypic 

characterization of TMJ health and disease at clinical, imaging and biological levels, using novel 

flexible and versatile open-source tools for a web-based system that provides advanced shape 

statistical analysis and a neural network based classification of temporomandibular joint 

osteoarthritis.
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1. Introduction

No proven disease-modifying therapy exists for osteoarthritis (OA) and current treatment 

options for chronic arthritic pain are insufficient (Hunter et al., 2013). The NIH-funded 

categorization of OA includes imaging, clinical and molecular markers of inflammation, 

angiogenesis and bone resorption in arthritis initiation and progression. Variation in disease 

progression requires biomarkers that can reflect morphological and pathological changes in 

joints, beginning in the earliest stages of OA development and throughout the course of the 

disease. Biochemical markers may reflect ultrastructural changes in joint tissue metabolism 

very early in the disease process prior to any apparent change in imaging appearance. Not 

only local proteins in the synovial fluid, but also circulating levels of proteins, may play a 

role in the cross-talk among the different joint tissues. The ascertainment of variations 

de Dumast et al. Page 2

Comput Med Imaging Graph. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between health and disease is essential information for detecting inflammatory and 

degenerative conditions of the tissues affected (Abramson and Attur, 2009).

Patient data in clinical research on Temporo-Mandibular Joint Osteoarthritis often includes 

large amounts of structured information, such as imaging data, biological marker levels, and 

clinical variables. The present study proposes improvement in the precision of the subjective 

radiological interpretation of morphological variability described in Su et al., (2014) the 

unsupervised statistical classification proposed by Gomes et al., (2015), and the shape 

statistical models proposed by Paniagua et al., (2017). Given the various sources of 

information, computerized methods can be a great help to clinicians to discover hidden 

patterns in the data. The computerized methods often employ data mining and machine 

learning algorithms, lending themselves as the computer-aided diagnosis tool that assists 

clinicians in making diagnostic decisions. State-of-the art methods to classify morphological 

variations include extreme learning machine, sparse representation-based classification and 

neural network deep learning (Ashinsky et al., 2017, Li, 2018). Neural network applications 

in computer-aided diagnosis represent the main stream of computational intelligence in 

medical imaging (Qian et al., 2007). Their application is generalizable to most medical 

problems due the adaptive and flexible nature of learning directly from input information. 

Given a suitable learning algorithm, the neural network can improve the algorithm 

performance in accordance with the variety and the change of input datasets. Neural 

networks have the capability of optimizing the relationship between the input and output via 

distributed computing, training, and processing, leading to reliable solutions to a specific 

clinical question. Diagnosis often relies on visual inspection of scans, and 3D imaging 

provides a most important tool for facilitating such inspection and visualization. Surpassing 

human-level performance on certain image recognition tasks, neural networks enable the 

incorporation of large training data sets, as well as the use of different shape analysis 

features within the same classification (Jiang et al., 2010).

The neural network deep learning proposed in this manuscript to classify morphological 

variability extract features from the mandibular condyle morphology to describe each patient 

3D mesh. There is a compelling need for such more efficient software tools that facilitate the 

analyses of clinical, biological and imaging data of the complex heterogeneous conditions in 

TMJ OA. To answer the diagnostic and assessment of treatment effectiveness challenges, 

our innovative solutions include the development of a web-based system, which implements 

a broad set of statistics and an advanced neural network classifier that supports the analysis 

of shape variability based on a training dataset. Our DSCI (Data Storage for Computation 

and Integration) web system provides useful features for integrating databases, performing 

data quality control and sample selection. The purpose of this study is to describe the DSCI 

system methodological innovations in functionality and efficiency, using a training imaging 

data set to remotely compute a neural network classifier of temporomandibular joint 

osteoarthritis.
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2. Materials and Methods

2.1. Materials

Data used in the preparation of this article were obtained from the Dental and Craniofacial 

Bionetwork of Image Analysis database (DCBIA). The DCBIA has performed an 

observational clinical study that collected imaging, biological, and clinical data to 

characterize TMJ OA. This study is in concordance with STrengthening the Reporting of 

OBservational studies in Epidemiology (STROBE) guidelines for observational studies. The 

University of Michigan Institutional Review Board approved the data acquisition and 

analysis in this study.

This study included imaging, clinical and biological datasets. Three-dimensional (3D) 

surface representation (meshes) for 293 condyles were constructed from CBCT scans. The 

training dataset consisted of 259 condyles, 105 from control subjects and 154 from patients 

with diagnosis of TMJ OA. For the image analysis classification, 34 right and left condyles 

from 17 patients (39.9 ± 11.7 years), who experienced signs and symptoms of the disease for 

less than 5 years, were included as the testing dataset. For the integrative statistical model of 

clinical, biological and imaging markers, the sample consisted of the same 17 test OA 

subjects and 17 age and sex matched control subjects (39.4 ± 15.4 years), who did not show 

any sign or symptom of OA. For these 34 subjects, a standardized clinical questionnaire, 

blood and saliva samples were also collected. Subjects recruited from the university clinic 

and through advertisement, underwent a clinical exam by an orofacial pain specialist using 

the research diagnostic criteria for temporomandibular disorders (RDC/TMD) guidelines 

(Ahmad et al., 2009). Following clinical diagnosis of TMJ osteoarthritis or health, a Cone 

beam CT (CBCT) scan was taken on all participants, with 0.08 mm isotropic voxel size and 

4cm × 4cm field of view, using the 3D Accuitomo 170, Morita Corp. Blood and saliva 

samples were collected on the same day by an experienced nurse at the Department of Oral 

and Maxillofacial Surgery. Subjects allowed the saliva to naturally drool down the funnel 

into the collection tube, until the amount of saliva collection reached around 3 ml or 15 min 

maximum. Immediately after collection, liquid saliva was aliquoted to exactly 2 ml, and 

inhibitor protease (Aprotinin + PMSF) was added. 400ul–500ul aliquots of the saliva + 

protease volume was placed into 4–5 Eppendorf tubes and stored at −80°C for future 

analysis. 4 ml of blood sample was collected in a unique EDTA tube. After collection, cells 

were removed from plasma by centrifugation for 20 minutes with 1000 revolutions per 

minute (rpm). Plasma and cells were placed into different Eppendorf tubes, 3 each one, and 

stored at −80°C.

2.2. Biological Samples Methods

Custom quantibody protein microarrays RayBiotech (Norcross, GA) were used to evaluate 

the saliva and serum samples for 17 biomarkers expressed in both synovial fluid and blood 

in our preliminary work (Cevidanes et al., 2014). This assay is array-based multiplex 

sandwich ELISA system for simultaneous, quantitative measurement the concentration of 

multiple proteins. Like an ELISA, it uses a pair of antigen-specific antibodies to capture the 

protein of interest. The use of biotinylated antibodies and a streptavidin-conjugated fluor 

allow detection levels for the specific proteins to be visualized using a fluorescence laser 
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scanner (RayBiotech, 2017). For protein quantification, the reagent kit included protein 

standards, whose concentration had been predetermined, provided to generate a six-point 

standard curve of each protein. Standards and samples were assayed simultaneously. By 

comparing signals from unknown samples to the standard curve, the unknown protein 

concentrations in the samples were determined. Positive controls for each biomarker were 

included in each array and the array data obtained from densitometry were entered into the 

appropriate cells of the corresponding analysis tool, which plotted the standard curve for 

each analysis in addition to performing background subtraction/normalization. The 

biomarkers chosen were known to be associated with bone repair and degradation, 

inflammation or nociception, common processes seen in OA. Preprocessing steps for these 

samples were completed at the School of Dentistry and then shipped to RayBiotech for 

analysis. All samples were evaluated in duplicate for level of proteins 6ckine, ANG, BDNF, 

CXCL16, ENA-78, GM-CSF, IFNγ, IL-1α, IL-6, MMP-3, MMP-7, PAI-1, TGFβ1, 

TIMP-1, TNFα, VE-Cadherin and VEGF.

2.3. Image Analysis Methods

Correspondence of Condylar 3D Surface Meshes—The process of constructing 

surface models from the CBCTs is called segmentation, and was performed interactively 

with the open-source ITK-SNAP 2.4 software (Yushkevich et al., 2006). After generating all 

3D surface models, left condyles were mirrored in the sagittal plane to be in the same 

orientation as the right condyles to facilitate bilateral comparisons. The regional 

superimposition technique used in the present study for a cross-subject comparisons was 

validated by Schilling et al., (2014). After registration, all condylar models were 

simultaneously cropped to define the condylar region of interest. SPHARM-PDM software 

(Paniagua et al., 2017) was used to generate a mesh with 1002 correspondent vertices, via 

spherical parameterization of the input segmentations. An average 3D condylar shape was 

generated for the TMJ OA groups and control group using the ShapeVariationAnalyzer 

(SVA) extension for the 3D Slicer open-source software (Dumast, 2017, Fedorov et al., 

2012). In order to compute the group average and group variability, we established 

correspondence between each of the 1002 vertices in the condylar surface models across all 

subjects (Prieto et al., 2017). This homology is further optimized via group-wise 

correspondence (Lyu et al., 2013). For thirty condyles of other patients with chronic and 

advanced arthritic degeneration, the severe dismorphologies did not provide adequate, 

automatic establishment of homology; therefore, those condyles were not included in the 

training dataset.

Data Storage for Computational Integration of Biological, Clinical and Imaging 
Data—An encoded patient ID was used to de-identify subjects before storing in the DSCI 

web-system. No patient identifiers are stored. Data regarding specimen collection (blood and 

saliva samples), digital data from CBCT scans and the clinical survey data were recorded 

following ALCOA (Attributable, Legible, Contemporaneous, Original and Accurate) 

attributes. The DSCI allows the display of tables with all the data relative to the patients in a 

given study.
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The architecture of the data storage is based on a NOSQL model using JavaScript Object 

Notation (JSON) files. The JSON files are text files with key-value pairs. Each JSON file 

represents a different object in the database with a 128-bit identification number, generated 

at creation, to identify them. Contrary to traditional SQL databases, in a NOSQL database, 

there is no requirement to define the relationships between objects in the database. Instead, 

the relationships are revealed using a map-reduce algorithm, where the fields in the JSON 

document serve as primary keys. We use the key-value pair notation to create lists of 

documents that are consumed by other applications written in various languages such as 

Python or C++.

The storage architecture has been designed with multiple levels. The top level is a project 

document; it can contain a name, a description, the number of patients, and one or multiple 

collections of data. The collection is the level below the project and is defined by a name and 

a list of de-identified/encoded patients. The lowest level is each patient document that can 

contain imaging, clinical and biological data for each project (Prieto et al., 2017).

On the DSCI website, a webpage has been implemented to ease selection of the display, 

creation and edits of different projects/collections. The dashboard and panels also allow 

management of projects, such as overall statistics of datasets, users activity or the degree of 

completion. The structure of the DSCI website and the database allows different types of 

collections:

– The clinical and biological data collections were uploaded from Comma 

Separated Values (CSV) files or directly input on the website with a customized 

form for the study.

– The morphological collections (imaging data) can be 3D surface models or 

volumes, that were uploaded and displayed directly on the website. To ease the 

manipulation of the morphological/imaging data, a plugin, DatabaseInteractor 

(Mirabel, 2017), has been developed for 3D Slicer. From the plugin, users can 

download data from and upload imaging data.

For this present study, the DSCI system trained and tested neural networks by constructing 

computational graphs of the imaging data. The DSCI also implemented an interface to run 

remotely the Multivariate Functional Shape Data Analysis (MFSDA) tool. The MFSDA 

computed statistical shape analysis models of TMJ OA, testing the integrating information 

of 3D mesh coordinates, clinical information and levels of biological markers. To run the 

code remotely, we set up a connection with Flux, a high-performance computing (HPC) 

Linux-based cluster provided by the Advanced Research Computing Technology Services 

(ARC-TS) at the University of Michigan (http://arc-ts.umich.edu/systems-and-services/

flux/).

Shape Variation Analysis and Classification—The classification system in this study 

was trained to distinguish different degrees of shape deformation in TMJ OA. A consensus 

visualization and interpretation of 3D surface morphology by two expert clinicians (MSY 

and ACR) was used to classify subjects with clinical diagnosis of TMJ OA. The clinicians 

classified the condylar morphology into 5 sub-groups with different degrees of condylar 
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degeneration that were later compared to SVA’s automatic classification (Dumast, 2017). 

The SVA module of the Slicer software was used for automatic classification of 

morphological variation in TMJ OA, based on a neural network. The training of the neural 

network can be performed in the DSCI system, where the classifier learns from features 

extracted from the 3D meshes of the condyles. The SVA module computes the average shape 

of each group of condylar dysmorphology, as well as geometric features at each vertex of the 

mesh. The features are stored into arrays and linked to their corresponding vertices in the 3D 

meshes. Those vertex-wise features (Koenderink, 1990) are:

– Normal vector: 3 scalars for the x, y, and z coordinates

– Curvatures: 4 scalars for mean, minimum, maximum, and Gaussian curvature.

– Distances: As many components as classes

– Shape Index: 1 scalar

– Curvedness: 1 scalar

– Position: 3 scalars for the x, y, and z coordinates

The shape index and curvedness (Koenderink and Vandoorn, 1992) were computed using the 

principal curvatures (κ1, κ2) at every point in the surface. The shape index described local 

surface topology in terms of the principal curvatures, calculated as follows:

s = 2
πarctanκ1 + κ2

κ1 − κ2

The curvedness was calculated as a measurement of the amount or ‘intensity’ of the surface 

curvature as follows:

c =
k1 + k2

2
2

Neural network architecture: The neural network learns tasks by considering examples. It is 

based on a collection of connected units called neurons organized in layers. We use a soft-

max layer with one output per class. The output vector will be the probability for each shape 

to belong to a class. The algorithm extracts shape features to classify each sample in the 

training data in a class and can then classify new samples thanks to this probabilistic 

function (the softmax function). The TensorFlow open-source library (Abadi et al., 2015) 

was used to train and test the neural network by constructing computational graphs. The 

neural network was trained to classify a given shape into one of the 5 groups indicating the 

severity of the disease. The input data to train the network was stored in a matrix with 

dimensions [number (nbr) of subjects, nbr of vertices, nbr of features]. By training a neural 

network we sought to identify discriminative patterns of these features and encoded them in 

the network (deep learning). The neural network architecture has two hidden layers and 

follow the geometric pyramid rule (Masters, 1993). The output of the first layer is connected 

to a rectified linear unit and the second layer generates the scores or probabilities of 

belonging to a class. The deeper the neural network, ie, if we added more hidden layers, 3 or 
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4, more abstraction from the data would be learned. At the stage of development of our deep 

learning network, we chose 2 hidden layers, because more hidden layers could cause 

overfitting with our current sample size (Zagoruyko et al., 2016).

In order to identify patterns that generalize well and create a working classifier of shape 

variability, it is necessary to train the network using as many samples as possible. Moreover, 

it is important to have the same number of samples for each class. As our database contains 

fewer samples for some of the disease groups, the condylar database was not used in its 

entirety during the training phase. Having unbalanced datasets in the machine-learning field 

is common and is known as the ‘class imbalance problem. In order not to over-train the 

network for one of the groups, the training procedure requires the same number of meshes in 

each training group (LeCun et al., 2015). To increase the number of datasets in each training 

group, we simulated data by adding perlin noise (vtk.org) of small magnitude to each 

coordinate in the shape, and then the features were recomputed. Perlin noise is an algorithm 

to generate smooth noise in the X, Y, Z coordinates of the meshes 1002 points, creating 

different shapes from our sample. The simulated data was visually inspected to assess if the 

shape looked realistic. For training the neural network, we simulated data to ensure that 74 

meshes were available per group. For groups that had more than 74 meshes such as the 

control group, the preprocessing step randomly selected 74 condyles.

Validation of the neural network: Before the training phase, 3 meshes per each group were 

removed from the training dataset. The validation dataset was used during the training, in 

order to monitor the progression of the network. Thus, the training dataset consisted of 

(74-3) × 6 groups= 426 meshes.

The testing dataset consisted of another 34 condyles. The SVA classification of the testing 

dataset provides the estimated classification group for the input meshes (34 condylar surface 

meshes in this study). The SVA classification was then compared to the clinical expert 

classification.

3. Statistical Analysis

For statistical analysis of the classification of condylar 3D meshes variability, a confusion 

matrix, also known as error or contingency matrix (Stehman, 1997), allowed visualization of 

the performance of the supervised learning SVA algorithm.

We considered the Multivariate Functional Shape Data Analysis (MFSDA) on the 3D 

meshes data. In MFSDA, the Multivariate Varying Coefficient Model (MVCM) (Huang et 

al., 2017, Zhu et al., 2012) is introduced to build the relationship between the 3D meshes 

data and other variables of interest. In particular, the different groups of variables are taken 

into account in MVCM, i.e., demographic variables (age, gender), clinical variables 

(diagnosis information, clinical markers), and biological markers. In order to select the 

variables in each group we used Principal Component Analysis (PCA). Specifically, 

variables highly correlated with the first principal components are selected from each group 

of variables.
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To estimate the parameters in MFSDA, we employ a weighted least squares (WLS) method 

based on the multivariate local polynomial kernel smoothing technique (Fan and Gijbels, 

1996). In our shape data analysis, we are interested in testing whether there is significant 

morphological difference caused by the variables we are interested in. We introduce both 

local and global Wald-type test statistics (Zhu et al., 2012) to investigate this hypothesis 

testing problem. In particular, the global p values are calculated by wild Bootstrap method 

(Zhu et al., 2007) and the local p values are corrected via the false discovery rate (FDR) 

method (Benjamini, 2010) to deal with the multiple comparison issues. The package 

MFSDA, along with its documentation, is accessible from the website https://github.com/

BIG-S2/MFSDA.

3.1. Software

ShapeVariationAnalyzer module (SVA): is a 3D Slicer plug-in to compute average 

morphologies and classify morphological variability using a neural network. The tool 

architecture uses Python, C++ code and VTK C++ libraries. The neural network is 

developed using TensorFlow (Abadi et al., 2015), an open-source library for machine 

learning. The source code is free and available on GitHub (Figure 1) (Dumast, 2017).

DatabaseInteractor module: is a 3D Slicer plug-in to manage patient data, upload and 

download imaging data in the web-based system, and create and manage image processing 

tasks. The tool architecture has been developed in Python. The source code is free and 

available on GitHub (Figure 2) (Mirabel, 2017).

Data Storage for Computation and Integration (DSCI) web-based system: the web-based 

system utilizes Node and Hapi for the back-end framework, Couchdb for storage, and JSON 

Web Token (JWT) for the authentication system. A plug-in was developed for Node that 

allows storage and retrieval of user information, as well as JWT encryption upon user login. 

We also integrated the Clusterpost plug-in into the system to allow submitting tasks to 

remote computing grids, using the data stored in the system. The front end of the application 

is based on Angular.js. The visualizations utilize D3.js and Threejs. The application is 

hosted using Amazon web services or the Elastic Computing Cloud (EC2). The computation 

tasks, such as MFSDA, use 4 cores, with 4 GB of RAM per core, stored on Flux (Figure 2). 

Flux consists of approximately 27,000 cores – including 1,372 compute nodes composed of 

multiple CPU cores, with at least 4 GB of RAM per core, interconnected with InfiniBand 

networking.

4. Results

4.1. Classification of Condylar Morphology

The classification of 3D morphology performed by experienced clinicians resulted in 8 

groups of morphological variability shown in Figure 3. The 8 subgroups of condylar 

morphology had marked differences in size in the partition of the data. The smallest group 

(Degeneration 5) had only 5 condyles, whereas the largest one (Control group) had more 

than 100 condyles. The two small groups with the most severe phenotypes of bone 

destruction were merged (Table 1 and Figure 3). The bone proliferations and overgrowth 
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group were not included in the training database as hyperplastic/ hypertrophic conditions 

with bone proliferations do not seem to have a defined, common morphological pattern 

(Figure 4), and are a different clinical condition compared to progressive degenerative joint 

conditions.

From the different combinations of features that were used to train the network, the features 

that led to higher accuracy of the morphological classification, compared to the clinician 

expert assessments, were normal vectors, mean curvature, and the distances to the average 

meshes at each mesh vertex. The results reported in this paper were run using those features, 

with neural network architecture of 1 hidden layer, 2001 iterations, 50 epochs (number of 

times the entire dataset was used in the training). The SVA performance is shown in the 

confusion matrix (Table 2), where each column represents the instances in the SVA 

classification group, while each row represents the group instances as assessed by the 

consensus between two clinician experts. Agreement between the clinician consensus and 

the SVA classification are located in the main diagonal of the table. Cells adjacent to the 

main diagonal (1 diagonal to the right and 1 diagonal to the left) indicate the classification of 

the degree of degeneration was within 1 group difference. The main and adjacent diagonals 

include 91% of the testing dataset. The cells outside the 3 middle diagonals show that 3 out 

of 34 condyles were classified with 2 or more groups difference.

4.2. Multivariate Functional Shape Data Analysis (MFSDA)

The MFSDA statistics included a subset of the above dataset: mandibular condyle 3D 

meshes from 34 subjects (17 TMJOA patients and 17 asymptomatic controls). Each subject 

has 2 TMJ condyles, left and right, but the biological and clinical data refer to on each 

subject without being side specific. For this reason, the left or right condyle of choice for the 

MSFDA statistics was the side with most severe symptoms in the OA group, and the 

matching control condyle. The demographic information included were age and sex. Seven 

pain–related clinical variables were tested: current facial pain intensity, worst facial pain 

over the last 6 months, average facial pain intensity over the last 6 months, pain duration in 

years, distress by headaches during last month and distress by muscle soreness during the 

last month (Table 3). The MSFDA model also tested 8 biological markers that were 

expressed at the best confidence levels in both in saliva and plasma samples (ANG, 

CXCL16, ENA-78, MMP-3, MMP-7, TIMP-1, TNFα, VE-Cadherin and VEGF, Table 4). 

The statistical analysis of pain-related clinical variables revealed that the variable “current 

pain intensity” in OA subjects was significantly correlated with “worst pain intensity in last 

6 months” and “average facial pain intensity over the last 6 months”. Principal Component 

Analysis (PCA) showed that the percentage of the total variance explained by first two 

principal components is over 82%. The variable “worst pain intensity in last 6 months” was 

highly correlated with the first PC score (pearson correlation = 0.905, p-value=6.08E-7); and 

the variable “pain duration in years” was highly correlated with the second PC score 

(pearson correlation = 0.666, p-value=0.0035). Thus, these two-clinical painrelated variables 

were included in the MSFDA model (results reported in Table 3 and Figure 5).

The statistical analysis of the biological variables, measured by levels of specific proteins in 

plasma and saliva, revealed that saliva levels of MMP-7 in OA subjects were significantly 
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correlated with ANG and MMP-3, VE-cadherin levels correlated with MMP-3 and MMP-7, 

ENA-78 levels correlated with CXCL16 and VEGF levels correlated with TIMP-1 and 

CXCL16. Plasma levels of MMP-7 in OA subjects were significantly correlated with 

MMP-3; CXCL16 levels were correlated with ANG, MMP-3 and MMP-7; and VEGF levels 

were correlated with VE-cadherin (Table 4). PCA showed that the percentage of the total 

variance of protein levels in saliva explained by the first principal component was over 99%. 

As VE-cadherin levels in saliva (VE-cadherin_S) were highly correlated with the first PC 

score (pearson correlation = 1.00, p-value=1.71E-41), this variable was included in the 

MSFDA model. PCA also showed that the percentage of the total variance of protein levels 

in plasma explained by first two principal components was over 99%. VE-cadherin levels in 

plasma (VEcadherin_ P) were highly correlated with the first PC score (pearson correlation 

= 1.000, p-value=5.84E-36); MMP-3 levels in plasma (MMP-3_P) were highly correlated 

with the second PC score (pearson correlation = 0.758, p-value=5.35E-23). Thus, both VE-

cadherin_P and MMP-3_P were included in the MSFDA model and results for global and 

clustering p-values shown in Table 5, and local–values for clinical and biological variables 

are shown in Figure 5.

5. Discussion

The present study incorporates novel approaches to temporomandibular joint osteoarthritis, 

conditions that were described by the RDC/TMD consortium in 2010 (Look et al., 2010a, 

2010b). To our knowledge, this is the first study to compare phenotypic findings across 

different degrees of 3D joint degeneration using a neural network classifier that may be 

augmented and also modified to input diverse patient data into the training database. The 

DSCI web-based system may aid researchers gain insight into biomarkers to help guide 

treatment or to predict risk factors of patient specific outcomes. This system stores, runs 

computing-intensive tasks, and integrates data from different sources. The classification of 

3D morphological variation presented in this paper addresses a clinical problem applicable 

to any research on morphological pathology and can be applied and generalized to multiple 

projects across institutions.

The patient testing data in the present study was stored in the DSCI web-based system in a 

structured manner. The imaging variables consisted of geometric features computed at each 

of the 3D condylar meshes 1002 vertices that are stored into arrays and linked to their 

corresponding vertices in the 3D meshes. Clinicians use diverse information from initial 

records for diagnosis and treatment planning. Variability in patient symptoms and imaging 

findings pose challenges in diagnosing, what leads to frequent disagreement among 

clinicians. Gaining better insight into patient data improves diagnostic accuracy, and helps 

clinicians assist in making decisions. Therefore, we need to develop algorithms to discover 

hidden information in diverse data sources. Data mining and machine learning methods are 

valuable tools in this regard. Over the past several decades, many algorithms have been 

proposed and have demonstrated good performance in mining medical data. Decision tree 

and support vector machines (SVM) are well-known algorithms (Wu et al., 2008). Deep 

learning has been regarded as the new generation of the neural networks since 2006, and 

now data analysis faces a new exciting era, in which big data, deep learning, and significant 
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computational power meet (Li, 2018). The deep learning architecture chosen for this study 

was able to capture complex morphology patterns.

Important advances of the present work compared to our previous Diagnostic Index 

(Paniagua et al., 2017) were the flexibility of use of different shape features in the SVA 

classifier and improved shape correspondence by running rigid alignment prior to 

SPHARM. The differences in classification between the clinicians assessment and the SVA 

classifier, may be due to the need to increase sample size to improve SVA classification, 

limitations in the clinicians visual perception, or the fact the registration and 

correspondence/homology of vertices in the surface meshes affect the computation of shape 

features in the SVA classifier. Moreover, the addition of simulated data does not increase the 

diversity inside a group. For the SVA classifier, future increase in training data can add more 

actual individual patient variability. Due to the number of 3D surface meshes in each group 

of this study training database, it could have been possible to add more simulated data, but 

such simulations would not improve the assessments of individual variability. Even if the 

simulated meshes are not exactly the same as the actual ones, they still have very similar 

morphologies. Training the neural network with too many similar meshes would over fit 

those specific meshes that would always be well classified. Then, the neural network would 

not have been able to properly classify meshes that are variably different but may have a 

similar stage of condylar degeneration. Our continued goal is to increase the training 

database sample size to extensively represent the variability possible in a certain group or 

degree of condylar degeneration. Once this variability is further represented, the SVA 

precision in classification of meshes will improve with deeper learning of the classification 

criteria.

Assessment of any new methodology includes testing the precision of its performance, 

compared to a gold standard. Recently, artificial intelligence (AI) has been touted as a new 

way to increase productivity by replacing clinician subjective interpretation. But long before 

AI or machines may replace clinicians, they will be helping us to make smart clinical 

decisions, so we can provide more precise and personalized treatment and become more 

productive. This use of technology is called “intelligence augmentation” and because of its 

imminent and extensive impact, it deserves a closer look (Lavenda, 2017). Whether we call 

it neural network, artificial intelligence (AI) or intelligence augmentation (IA), these 

cognitive systems are neither autonomous nor sentient, but they form a new kind of 

intelligence that has nothing artificial about it. They augment our capacity to understand 

what is happening in the complex world around us (Rometty, 2017). While artificial 

intelligence can improve efficiency by replacing humans for focused tasks, it is in the 

application of machine intelligence to augment human decision-making that the real 

advances in precise and personalized health care may occur. Understanding the roles 

machine learning can play is the key to maximizing both artificial and human intelligence in 

diagnosis and planning of treatment, as well as in assessment of treatment outcomes.

Our long-term goal is to create a repository for Osteoarthritis of the TMJ. Such repository 

requires maintaining the data in a distributed computational environment to allow 

contributions to the database from multi-clinical centers and to share trained models for TMJ 

classification. Both the novel shape statistics computation and the neural network training 
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and classification require the advanced computational power provided by the DCSI web-

system in this study. The distributed computation allows executing these computing 

intensive tasks outside the clinical centers. The web-based system in this study is not only an 

improved way to display complex data in any databases. It has also been designed to run 

programs, such as neural networks and advanced statistical programs, using data stored in 

the DSCI database. Subsets can be created from datasets in projects and the website allows 

users to create jobs to be run on a remote computing grid, to check the status of job 

execution, and get the outputs. One of the challenges in this study was to integrate different 

types of data in the DSCI web-based system. The results of this study demonstrate the 

feasibility of testing comprehensive phenotypic characterization, including clinical 

symptoms, 3D morphology and molecular levels of patient specific information. This 

versatile and robust web-system allows managing many different projects, where each 

dataset remains independent, so the data can be shared between projects with the same 

patient ID.

6. Conclusion

The findings of this study demonstrate a comprehensive phenotypic characterization of TMJ 

health and disease at clinical, imaging and biological levels, using novel flexible and 

versatile open-source tools for a web-based system that provides advanced shape statistical 

analysis and a neural network based classification of temporomandibular joint osteoarthritis.
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Highlights

• Web-based system for storage, integration and computation of biomedical 

data.

• Deep neural network to classify temporomandibular joint osteoarthritis.

• Web-based system provides advanced shape statistical analysis.
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Figure 1. 
ShapeVariationAnalyzer (SVA) Slicer plug-in. A, SVA architecture; B, User interface.
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Figure 2. 
DSCI web-based system architecture based on plug-ins for a distributed application. The 

framework allows easy integration of a variety of plug-ins. The authentication system is 

based on JSON Web Tokens. The clusterpost plug-in allows submitting heavy computational 

tasks to remote computing grids, such as Flux, Linux-based high-performance computing at 

the University of Michigan.
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Figure 3. 
Average 3D meshes for each group of morphology variability. Eight subgroups of condylar 

morphology variability are shown in the top row. For the neural network training data, the 

overgrowth group was not included and two subgroups with the most severe phenotypes of 

bone destruction were merged.

de Dumast et al. Page 19

Comput Med Imaging Graph. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Examples of condyles in each subgroup with semitransparency overlay of each condyle (red) 

and the average control condyle (transparent yellow). Condyles with overgrowth did not 

present a common morphology pattern. The degeneration groups show progressive 

degeneration that start with flattening of the articular surface in the degree 1 of degeneration; 

more marked resorption of the lateral pole and bone proliferations anteriorly were observed 

in the degree 2 of degeneration; further resorption of the articular surface and bone 

proliferation anteriorly led to changed condylar torque in the degree 3 of degeneration; 

advanced degenerative stages presented loss of overall condylar structure in the degree 4 of 

degeneration.
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Figure 5. 
MSFDA statistics showing the local p-value maps of significant correlations of clinical and 

biological co-variates with morphological variability in the testing dataset.
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Table 5

Demographic, clinical and biological co-variates in MSFDA model of correlations with 1002 vertices in 

condylar 3D meshes

Co-variates in MSFDA model global p-value clustering p-value

Age 0.133 0.092

Sex 0.031 0.024

worst pain 0.031 0.084

duration of pain in years 0.04 0.054

VE-cadherin levels in saliva 0.027 0.05

MMP-3 levels in plasma 0.107 0.068

VE-cadherin levels in plasma 0.001 0.018
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