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Abstract

This study presents a web-system repository: Data Storage for Computation and Integration 

(DSCI) for Osteoarthritis of the temporomandibular joint (TMJ OA). This environment aims to 

maintain and allow contributions to the database from multi-clinical centers and compute novel 

statistics for disease classification. For this purpose, imaging datasets stored in the DSCI consisted 

of three-dimensional (3D) surface meshes of condyles from CBCT, clinical markers and biological 

markers in healthy and TMJ OA subjects. A clusterpost package was included in the web platform 

to be able to execute the jobs in remote computing grids. The DSCI application allowed runs of 

statistical packages, such as the Multivariate Functional Shape Data Analysis to compute global 

correlations between covariates and the morphological variability, as well as local p-values in the 

3D condylar morphology. In conclusion, the DSCI allows interactive advanced statistical tools for 

non-statistical experts.
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1. INTRODUCTION

In the field of medical research, one of the main objectives is to develop tools that can be 

widely used by the greatest number of physician, dentists, researcher, and the general 

public1,2. It is therefore essential to make these new tool features accessible to all interest 

users. The most powerful algorithms used in medical/dental data processing, such as neural 

networks3 and shape statistic (Multivariate Functional Shape Data Analysis – MFSDA4), 

require very large sample sizes to be effective. Standardized protocols for collection of 

medical/dental data in different clinics or hospital are required to solve problems related to 
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control of sample dimensionality and heterogenic. The first step in any study in a multitude 

of fields is to collect and store the large number of data of different types such as clinical, 

biological ad even 3D images. The Data Storage for Computation and Integration (DSCI) 

that we have created utilizes a database collected by clinicians researching 

temporomandibular joint (TMJ) osteoarthritis (OA). The security of the data is also a 

concern and while other technologies, such as Blockchain5, have been proposed as platforms 

for management of data collections in a secure environment, the current prototypes seem to 

be lees secure than our current database and we used a JSON web token6 that is a highly 

encrypted token. In addition, the cluster post technology is used to send tasks to remote 

servers such as the Umich Flux technology. It allows the users to send a big amount of 

computing tasks without having trouble with the run rime because that technology is much 

faster than standard computers. Our long-term goal is to create repositories for clinical 

studies maintaining the data in a distributed computational environment to allow 

contributions to the database for multi-clinical centers and to shares trained models for TMJ 

classification. The novel shape statistics requires advanced computational power and is 

accessible via the website, where it is possible to execute computing intensive task outside 

the clinical centers.

Initially is it necessary to create a tool on the website DSCI to test correlations between the 

clinical and biological data and the 3D condylar meshes, in order to know which area of the 

condyles could become related with the covariates. Then, the MFSDA tests could be 

predictive of TMJ OA prognosis, i.e. whether a patient is at risk for worsening clinical 

symptoms and condylar degeneration. The MFSDA is a statistical package that are no 

correlated with each other, and which are strongly correlated with the principal variables in 

the study. The pre-processing plugin is a package available on the website to run those 

correlations in order to test correlations among covariates as well as their correlation with 

the principal components to determine which covariates to include in the MFSDA model. 

The purpose of this study is to create this web-system repository, DSCI for Osteoarthritis of 

the TMJ (TMJ OA) to maintain the data in a distributed computational environment and 

allow contributions from multi-clinical center, compute novel shape statistics, train a neural 

and allow interactive visualization of data stored and computational results.

2. METHODS

2.1 Multivariate functional shape data analysis (MFSDA)

Suppose that we observe an image dataset for n unrelated subjects. Without loss of 

generality, we focus on a compact set, denoted as D ⊂ Rt, which is general enough to cover 

curves (t = 1), contours (t = 2), and surfaces (t = 3). It is assumed that d1, …, dNV  are NV 

grid points (or vertices) on D from the template file. Specifically, for the i-th subject, we 

observe a J × 1 vector of shape measurements corresponding to each grid point d, denoted as 

yi(d) = yi1(d), …, yiJ(d))T, and a p × 1 vector of covariates (e.g., age, gender, group 

information, and biological markers), denoted as xi. The MFSDA equation(1) is defined as
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yi j(d) = Xi
T B j(d) + ni j(d) + ei j(d) (1)

where Bj is a p x 1 vector of fixed effects, ni(d) = (ni1(d), …, niJ(d))T characterizes both 

subject-specific and location-specific variability, and ei(d) = (ei1(d), …, eiJ(d))T are 

measurement errors. It is also assumed that ni(d) and ei(d) are mutually independent. 

Compared with the standard linear regression model, MFSDA explicitly accounts for spatial 

smoothness, spatial correlation, and the low-dimensional representation of functional shape 

responses 7,8 Under model Equation 1, we investigate whether there is a statistically 

significant morphological difference caused by some covariate of interest or linear 

combination of covariates of interest, a local Wald-type test statistic is used.9 To estimate all 

unknown parameters in model (1), we employ a weighted least squares (WLS) method based 

on the multivariate local polynomial kernel smoothing technique7. In general, MFSDA 

consists of four steps: 1) Fit a model under the null hypothesis which yields Bj(d)*, nij(d)*, 

eij(d)* for all i and d. 2) Generate random bootstrap samples from all i and d. 3) For the 

bootstrap samples, calculate the Wald-type statistic Tn. 4) The p-value of Tn is calculated 

using an approximation method by a X2 – type random variable.8–10

2.2 Pearson correlations and principal component score (PCA)

The Pearson and PCA package were implemented on the DSCI web platform to tests both 

the Pearson correlations and the principal component scores among clinical or biological 

variables. The main aim of this module is to reduce the dataset to allow more efficient 

processing time when running the MFSDA model. In order to avoid the use of repetitive 

features of the dataset, the package allow the users to test the Pearson correlations among 

biological or clinical variables to select covariates not correlated with each other. The 

Pearson’s correlation coefficient is the covariance of the two variables divided by the 

product of their standard deviation. That’s why it has values between −1 and +1 where 1 is a 

total linear correlation and −1 a total negative correlation. This first step will be very useful 

to select which covariate to include in the statistical model when looking at the results of the 

principal component analysis (P). This second step is used to reduce the number of 

covariates to include in the model. The principal component uses an orthogonal 

transformation to convert correlated variables into linearly uncorrelated variables called 

principal components that explain a given percentage of the information contained in all the 

dataset. We then test the Pearson Correlation between the principal components and the 

covariates to detect which variables could be used as a principal component. To avoid 

repetitive features the user has to check if the covariates highly correlated with the principal 

components are correlated with each other. Indeed, all the covariates to be included in the 

statistical model must be uncorrelated with each other and highly correlated with each 

principal component. A covariate is considered as correlated if its p-value is below 0.05. In 

order to facilitate the use of this package, a pdf file is created when processing the statistical 

tool that summaries all the results in tables using different color bar.
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2.2 Implementation of the DSCI web platform

The DSCI system is a web-based application currently hosted on the Elastic Computing 

Cloud (EC2) of Amazon web services. Access to DSCI is handled using JSON Web Tokens 

(JWT), with JWT encryption of each user login. The DSCI facilitates and centralizes 

multiple data sources. It keeps track of data from previous experiments and assures the 

reproducibility of future experiments. In the TMJ study, the different types of data used are: 

responses to clinical questionnaires, protein levels in plasma and saliva (measured with 

quantitative microarrays via spreadsheet files), and imaging data via the DataBaselnteractor 

plugin11, available on open-source software called 3D-Slicer12. It allows the user to upload a 

VTK file13 on the database used by the platform. Node is a Javascript engine that facilitates 

building scalable network applications. Using Hapi as the server framework, we are able to 

build services and focus on writing reusable application logic instead of pure infrastructure. 

Hapi is fully REST and orchestrates communication between all components in the system. 

The tool used for storage is Couchdb, a NoSQL type database14, i.e., it does not store data 

and relationships in tables. Instead, each database is a collection of independent JSON 

documents. JSON is a flexible format and facilitates encoding data without enforcing a 

predefined rigid structure. In order to merge all the data stored in the system, the map reduce 

algorithm is used. It indexes the data in the system, using a unique patient anonymized id 

and users are allowed access after approval by the administrator. The Clusterpost package is 

used in our web platform to send tasks to remote computing grid in order to run plug-ins 

such as MFSDA that require high processing power. This package allows the users to 

execute the jobs through the plug-ins in remote grids using a REST api and nodes with 

Hapijs in the server side application. Concerning TMJ OA study, the use of Umich Flux 

technology (remote computing grid) is essential to be able to send a big amount of 

computing tasks at the same time. The Clusterpost execution is then useful to get the output 

data of all those runs which can be downloaded from the website. The interactive display 

available on the web site facilitates the understanding of the runs. The 3D visualization of 

the morphological data is handled by the visualization toolkit (vtk.js) and the visualization 

of the results has been developed using D3.js15. It is a JavaScript library for visualizing data 

using web standards.

3. RESULTS

The MFSDA package built associations between covariates (biological markers or clinical 

markers) and the morphological variability. This package computed the global correlations 

with morphological variability as well as local p-values in the 3D condylar morphology 

(Figure 1) The MSFDA tool worked with the coordinates of 3D meshes stored in VTK file 

format. A multivariate varying coefficient model then tested the association between the 

multivariate shape measurements, the demographic information and other clinical and 

biological variables.

The output values are stored in comma-separated value (csv) files but also in JSON files to 

fit with the documents used in the web platform. (Fig. 2)

The preprocessing model is currently available on the web platform as a plug-in. The user 

needs to create a project, choose the number of components to process (number of principal 
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components always lower than the total number of variables) and select the type of patient to 

study (OA or Control in TMJ study). The visualization of the state of the remote runs is 

displayed on the website (Fig 3) and is used to download the output files, display specific 

information from the script and show the state of the run (queue, run, done or failed).

The d3 display is fully interactive, indeed the user has the possibility to set his own color bar 

and scale to plot the results according to his expectations (Fig 4).

4. CONCLUSION

This is the first work to implement the computation of MFSDA in a web-based system that 

facilitates computation and access and to multiple data sources. This website can be used for 

distributed learning storage and management of data collected at different clinics or hospital, 

and training of algorithms bases on a neural network, in order to increase its accuracy. We 

developed efficient web-based data management, mining, and analytics that integrates and 

analyze clinical, biological, and high dimensional imaging data from TMJ OA patients. The 

Data Storage for Computation and Integration (DSCI) remotely computes machine learning, 

image analysis, and advanced statistics from patients with and without TMJ-OA. Our long-

term goal is to create and maintain the data in a distributed computational environment to 

allow contributions to the database from multi-clinical centers and to share trained models 

for TMJ classification.
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Figure 1. 
p-values visualization of clinical and biological markers on a 3D mesh computed by 

MFSDA.
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Figure 2. 
p-values among all the covariates computed by the preprocessing package.
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Figure 3. 
Remote runs visualization.
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Figure 4. 
Display of the preprocessing results using d3.js.
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