118 research outputs found

    NTT and NOT spectroscopy of SDSS-II supernovae

    Get PDF
    Context. The SDSS-II Supernova Survey, conducted between 2005 and 2007, was designed to detect a large number of Type Ia supernovae (SNe Ia) around z~0.2, the redshift "gap" between low-z and high-z SN searches. The survey has provided multi-band photometric lightcurves for variable targets, and SN candidates were scheduled for spectroscopic observations, primarily to provide SN classification and accurate redshifts. We present SN spectra obtained in 2006 and 2007 using the NTT and the NOT. Aims. We provide an atlas of SN spectra in the range z =0.03-0.32 that complements the well-sampled lightcurves from SDSS-II in the forthcoming three-year SDSS SN cosmology analysis. The sample can, for example, be used for spectral studies of SNe Ia, which are critical for understanding potential systematic effects when SNe are used to determine cosmological distances. Methods. The spectra were reduced in a uniform manner, and special care was taken in estimating the uncertainties for the different processing steps. Host-galaxy light was subtracted when possible and the SN type fitted using the SuperNova IDentification code (SNID). We also present comparisons between spectral and photometric dating using SALT lightcurve fits to the photometry from SDSS-II, as well as the global distribution of our sample in terms of the lightcurve parameters: stretch and colour. Results. We report new spectroscopic data from 141 SNe Ia, mainly between -9 and +15 days from lightcurve maximum, including a few cases of multi-epoch observations. This homogeneous, host-galaxy subtracted, SN Ia spectroscopic sample is among the largest such data sets and unique in its redshift interval. The sample includes two potential SN 1991T-like SNe (SN 2006on and SN 2007ni) and one potential SN 2002cx-like SN (SN 2007ie). In addition, the new compilation includes spectra from 23 confirmed Type II and 8 Type Ib/c SNe.Comment: Accepted for publication in A&

    A Study of Carbon Features in Type Ia Supernova Spectra

    Full text link
    One of the major differences between various explosion scenarios of Type Ia supernovae (SNe Ia) is the remaining amount of unburned (C+O) material and its velocity distribution within the expanding ejecta. While oxygen absorption features are not uncommon in the spectra of SNe Ia before maximum light, the presence of strong carbon absorption has been reported only in a minority of objects, typically during the pre-maximum phase. The reported low frequency of carbon detections may be due to low signal-to-noise data, low abundance of unburned material, line blending between C II 6580 and Si II 6355, ejecta temperature differences, asymmetrical distribution effects, or a combination of these. However, a survey of published pre-maximum spectra reveals that more SNe Ia than previously thought may exhibit C II 6580 absorption features and relics of line blending near 6300 Angstroms. Here we present new SN Ia observations where spectroscopic signatures of C II 6580 are detected, and investigate the presence of C II 6580 in the optical spectra of 19 SNe Ia using the parameterized spectrum synthesis code, SYNOW. Most of the objects in our sample that exhibit C II 6580 absorption features are of the low-velocity gradient subtype. Our study indicates that the morphology of carbon-rich regions is consistent with either a spherical distribution or a hemispheric asymmetry, supporting the recent idea that SN Ia diversity may be a result of off-center ignition coupled with observer line-of-sight effects.Comment: 10 papges, 9 figures, 3 table

    PHotometry Assisted Spectral Extraction (PHASE) and identification of SNLS supernovae

    Full text link
    Aim: We present new extraction and identification techniques for supernova (SN) spectra developed within the Supernova Legacy Survey (SNLS) collaboration. Method: The new spectral extraction method takes full advantage of photometric information from the Canada-France-Hawai telescope (CFHT) discovery and reference images by tracing the exact position of the supernova and the host signals on the spectrogram. When present, the host spatial profile is measured on deep multi-band reference images and is used to model the host contribution to the full (supernova + host) signal. The supernova is modelled as a Gaussian function of width equal to the seeing. A chi-square minimisation provides the flux of each component in each pixel of the 2D spectrogram. For a host-supernova separation greater than <~ 1 pixel, the two components are recovered separately and we do not use a spectral template in contrast to more standard analyses. This new procedure permits a clean extraction of the supernova separately from the host in about 70% of the 3rd year ESO/VLT spectra of the SNLS. A new supernova identification method is also proposed. It uses the SALT2 spectrophotometric template to combine the photometric and spectral data. A galaxy template is allowed for spectra for which a separate extraction of the supernova and the host was not possible. Result: These new techniques have been tested against more standard extraction and identification procedures. They permit a secure type and redshift determination in about 80% of cases. The present paper illustrates their performances on a few sample spectra.Comment: 27 pages, 18 Figures, 1 Table. Accepted for publication in A&

    Factors associated with SARS-CoV-2 infection risk among healthcare workers of an italian university hospital

    Get PDF
    We report the results of a study on the cumulative incidence of SARS-CoV-2 infections in about 6000 workers of the University Hospital of Modena, Northern Italy, in the period March 2020–January 2021, and the relations with some individual and occupational factors. Overall, in healthcare workers (HCW) the cumulative incidence of COVID-19 during the period was 13.8%. Results confirm the role of overweight and obesity as significant risk factors for SARS-CoV-2 infection. Chronic respiratory diseases, including asthma, also proved to be significantly associated with the infection rate. Considering occupational factors, the COVID-19 risk was about threefold (OR: 2.7; 95% CI 1.7–4.5) greater in nurses and nurse aides than in non-HCW, and about double (OR: 1.9; 95% CI 1.2–3.2) in physicians. Interestingly, an association was also observed between infection risk and nightshifts at work (OR: 1.8; 95% CI 1.4–2.3), significantly related to the total number of shifts in the whole eleven-month period. Even if the vaccination campaign has now greatly modified the scenario of SARS-CoV-2 infections among HCW, the results of this study can be useful for further development of health and policy strategies to mitigate the occupational risk related to the new variants of coronavirus, and therefore the evolution of the pandemic

    Supernova Legacy Survey: Using Spectral Signatures To Improve Type Ia Supernovae As Distance Indicators

    Get PDF
    GMOS optical long-slit spectroscopy at the Gemini-North telescope was used to classify targets from the Supernova Legacy Survey (SNLS) from July 2005 and May 2006 - May 2008. During this time, 95 objects were observed. Where possible the objects' redshifts (z) were measured from narrow emission or absorption features in the host galaxy spectrum, otherwise they were measured from the broader supernova features. We present spectra of 68 confirmed or probable SNe Ia from SNLS with redshifts in the range 0.17 \leq z \leq 1.02. In combination with earlier SNLS Gemini and VLT spectra, we used these new observations to measure pseudo-equivalent widths (EWs) of three spectral features - CaII H&K, SiII and MgII - in 144 objects and compared them to the EWs of low-redshift SNe Ia from a sample drawn from the literature. No signs of changes with z are seen for the CaII H&K and MgII features. Systematically lower EW SiII is seen at high redshift, but this can be explained by a change in demographics of the SNe Ia population within a two-component model combined with an observed correlation between EW SiII and photometric lightcurve stretch.Comment: 49 pages including 2 online-only appendices, accepted for publication in MNRA

    High-Velocity Features: a ubiquitous property of Type Ia SNe

    Full text link
    Evidence of high-velocity features such as those seen in the near-maximum spectra of some Type Ia Supernovae (eg SN 2000cx) has been searched for in the available SNIa spectra observed earlier than one week before B maximum. Recent observational efforts have doubled the number of SNeIa with very early spectra. Remarkably, all SNeIa with early data (7 in our RTN sample and 10 from other programmes) show signs of such features, to a greater or lesser degree, in CaII IR, and some also in SiII 6255A line. High-velocity features may be interpreted as abundance or density enhancements. Abundance enhancements would imply an outer region dominated by Si and Ca. Density enhancements may result from the sweeping up of circumstellar material by the highest velocity SN ejecta. In this scenario, the high incidence of HVFs suggests that a thick disc and/or a high-density companion wind surrounds the exploding white dwarf, as may be the case in Single Degenerate systems. Large-scale angular fluctuations in the radial density and abundance distribution may also be responsible: this could originate in the explosion, and would suggest a deflagration as the more likely explosion mechanism. CSM-interaction and surface fluctuations may coexist, possibly leaving different signatures on the spectrum. In some SNe the HVFs are narrowly confined in velocity, suggesting the ejection of blobs of burned material.Comment: 12 pages, 2 figures, ApJ Letters in pres

    Spectroscopy of High-Redshift Supernovae from the ESSENCE Project: The First Four Years

    Get PDF
    We present the results of spectroscopic observations from the ESSENCE high-redshift supernova (SN) survey during its first four years of operation. This sample includes spectra of all SNe Ia whose light curves were presented by Miknaitis et al. (2007) and used in the cosmological analyses of Davis et al. (2007) and Wood-Vasey et al. (2007). The sample represents 273 hours of spectroscopic observations with 6.5 - 10-m-class telescopes of objects detected and selected for spectroscopy by the ESSENCE team. We present 174 spectra of 156 objects. Combining this sample with that of Matheson et al. (2005), we have a total sample of 329 spectra of 274 objects. From this, we are able to spectroscopically classify 118 Type Ia SNe. As the survey has matured, the efficiency of classifying SNe Ia has remained constant while we have observed both higher-redshift SNe Ia and SNe Ia farther from maximum brightness. Examining the subsample of SNe Ia with host-galaxy redshifts shows that redshifts derived from only the SN Ia spectra are consistent with redshifts found from host-galaxy spectra. Moreover, the phases derived from only the SN Ia spectra are consistent with those derived from light-curve fits. By comparing our spectra to local templates, we find that the rate of objects similar to the overluminous SN 1991T and the underluminous SN 1991bg in our sample are consistent with that of the local sample. We do note, however, that we detect no object spectroscopically or photometrically similar to SN 1991bg. Although systematic effects could reduce the high-redshift rate we expect based on the low-redshift surveys, it is possible that SN 1991bg-like SNe Ia are less prevalent at high redshift.Comment: 21 pages, 17 figures, accepted to A

    Restframe I-band Hubble diagram for type Ia supernovae up to redshift z ~0.5

    Full text link
    We present a novel technique for fitting restframe I-band light curves on a data set of 42 Type Ia supernovae (SNe Ia). Using the result of the fit, we construct a Hubble diagram with 26 SNe from the subset at 0.01< z<0.1. Adding two SNe at z~0.5 yields results consistent with a flat Lambda-dominated``concordance universe'' (ΩM,ΩΛ\Omega_M,\Omega_\Lambda)=(0.25,0.75). For one of these, SN 2000fr, new near infrared data are presented. The high redshift supernova NIR data are also used to test for systematic effects in the use of SNe Ia as distance estimators. A flat, Lambda=0, universe where the faintness of supernovae at z~0.5 is due to grey dust homogeneously distributed in the intergalactic medium is disfavoured based on the high-z Hubble diagram using this small data-set. However, the uncertainties are large and no firm conclusion may be drawn. We explore the possibility of setting limits on intergalactic dust based on B-I and B-V colour measurements, and conclude that about 20 well measured SNe are needed to give statistically significant results. We also show that the high redshift restframe I-band data points are better fit by light curve templates that show a prominent second peak, suggesting that they are not intrinsically underluminous.Comment: Accepted for publication in A&A (01/04/2005

    Spectra of High-Redshift Type Ia Supernovae and a Comparison with their Low-Redshift Counterparts

    Get PDF
    We present spectra for 14 high-redshift (0.17 < z < 0.83) supernovae, which were discovered by the Supernova Cosmology Project as part of a campaign to measure cosmological parameters. The spectra are used to determine the redshift and classify the supernova type, essential information if the supernovae are to be used for cosmological studies. Redshifts were derived either from the spectrum of the host galaxy or from the spectrum of the supernova itself. We present evidence that these supernovae are of Type Ia by matching to spectra of nearby supernovae. We find that the dates of the spectra relative to maximum light determined from this fitting process are consistent with the dates determined from the photometric light curves, and moreover the spectral time-sequence for SNe Type Ia at low and high redshift is indistinguishable. We also show that the expansion velocities measured from blueshifted CaHK are consistent with those measured for low-redshift Type Ia supernovae. From these first-level quantitative comparisons we find no evidence for evolution in SNIa properties between these low- and high-redshift samples. Thus even though our samples may not be complete, we conclude that there is a population of SNe Ia at high redshift whose spectral properties match those at low redshift.Comment: Accepted for publication in AJ. Also available at http://supernova.lbl.gov

    ESC observations of SN 2005cf: II. Optical Spectroscopy and the high velocity features

    Get PDF
    The ESC-RTN optical spectroscopy data-set for SN 2005cf is presented and analyzed. The observations range from -11.6 and +77.3 days with respect to B-band maximum light. The evolution of the spectral energy distribution of SN 2005cf is characterized by the presence of high velocity SiII and CaII features. SYNOW synthetic spectra are used to investigate the ejecta geometry of silicon. Based on the synthetic spectra the SiII high velocity feature appears detached at 19500 km/s. We also securely establish the presence of such feature in SN 1990N, SN 1994D, SN 2002er and SN 2003du. On a morphological study both the CaII IR Triplet and H&K absorption lines of SN 2005cf show high velocity features centered around 24000 km/s. When compared with other Type Ia SNe based on the scheme presented in Benetti et al. 2005 SN 2005cf definitely belongs to the LVG group.Comment: A&A accepted for publicatio
    corecore