111 research outputs found
Localizing gravitational wave sources with optical telescopes and combining electromagnetic and gravitational wave data
Neutron star binaries, which are among the most promising sources for the
direct detection of gravitational waves (GW) by ground based detectors, are
also potential electromagnetic (EM) emitters. Gravitational waves will provide
a new window to observe these events and hopefully give us glimpses of new
astrophysics. In this paper, we discuss how EM information of these events can
considerably improve GW parameter estimation both in terms of accuracy and
computational power requirement. And then in return how GW sky localization can
help EM astronomers in follow-up studies of sources which did not yield any
prompt emission. We discuss how both EM source information and GW source
localization can be used in a framework of multi-messenger astronomy. We
illustrate how the large error regions in GW sky localizations can be handled
in conducting optical astronomy in the advance detector era. We show some
preliminary results in the context of an array of optical telescopes called
BlackGEM, dedicated for optical follow-up of GW triggers, that is being
constructed in La Silla, Chile and is expected to operate concurrent to the
advanced GW detectors.Comment: 8 pages, 8 figures, Proceeding for Sant Cugat Forum for Astrophysic
Inference on inspiral signals using LISA MLDC data
In this paper we describe a Bayesian inference framework for analysis of data
obtained by LISA. We set up a model for binary inspiral signals as defined for
the Mock LISA Data Challenge 1.2 (MLDC), and implemented a Markov chain Monte
Carlo (MCMC) algorithm to facilitate exploration and integration of the
posterior distribution over the 9-dimensional parameter space. Here we present
intermediate results showing how, using this method, information about the 9
parameters can be extracted from the data.Comment: Accepted for publication in Classical and Quantum Gravity, GWDAW-11
special issu
Coherent Bayesian inference on compact binary inspirals using a network of interferometric gravitational wave detectors
Presented in this paper is a Markov chain Monte Carlo (MCMC) routine for
conducting coherent parameter estimation for interferometric gravitational wave
observations of an inspiral of binary compact objects using data from multiple
detectors. The MCMC technique uses data from several interferometers and infers
all nine of the parameters (ignoring spin) associated with the binary system,
including the distance to the source, the masses, and the location on the sky.
The Metropolis-algorithm utilises advanced MCMC techniques, such as importance
resampling and parallel tempering. The data is compared with time-domain
inspiral templates that are 2.5 post-Newtonian (PN) in phase and 2.0 PN in
amplitude. Our routine could be implemented as part of an inspiral detection
pipeline for a world wide network of detectors. Examples are given for
simulated signals and data as seen by the LIGO and Virgo detectors operating at
their design sensitivity.Comment: 10 pages, 4 figure
Coherent Bayesian analysis of inspiral signals
We present in this paper a Bayesian parameter estimation method for the
analysis of interferometric gravitational wave observations of an inspiral of
binary compact objects using data recorded simultaneously by a network of
several interferometers at different sites. We consider neutron star or black
hole inspirals that are modeled to 3.5 post-Newtonian (PN) order in phase and
2.5 PN in amplitude. Inference is facilitated using Markov chain Monte Carlo
methods that are adapted in order to efficiently explore the particular
parameter space. Examples are shown to illustrate how and what information
about the different parameters can be derived from the data. This study uses
simulated signals and data with noise characteristics that are assumed to be
defined by the LIGO and Virgo detectors operating at their design
sensitivities. Nine parameters are estimated, including those associated with
the binary system, plus its location on the sky. We explain how this technique
will be part of a detection pipeline for binary systems of compact objects with
masses up to 20 \sunmass, including cases where the ratio of the individual
masses can be extreme.Comment: Accepted for publication in Classical and Quantum Gravity, Special
issue for GWDAW-1
Binary black hole spectroscopy
We study parameter estimation with post-Newtonian (PN) gravitational
waveforms for the quasi-circular, adiabatic inspiral of spinning binary compact
objects. The performance of amplitude-corrected waveforms is compared with that
of the more commonly used restricted waveforms, in Advanced LIGO and EGO. With
restricted waveforms, the properties of the source can only be extracted from
the phasing. For amplitude-corrected waveforms, the spectrum encodes a wealth
of additional information, which leads to dramatic improvements in parameter
estimation. At distances of Mpc, the full PN waveforms allow for
high-accuracy parameter extraction for total mass up to several hundred solar
masses, while with the restricted ones the errors are steep functions of mass,
and accurate parameter estimation is only possible for relatively light stellar
mass binaries. At the low-mass end, the inclusion of amplitude corrections
reduces the error on the time of coalescence by an order of magnitude in
Advanced LIGO and a factor of 5 in EGO compared to the restricted waveforms; at
higher masses these differences are much larger. The individual component
masses, which are very poorly determined with restricted waveforms, become
measurable with high accuracy if amplitude-corrected waveforms are used, with
errors as low as a few percent in Advanced LIGO and a few tenths of a percent
in EGO. The usual spin-orbit parameter is also poorly determined with
restricted waveforms (except for low-mass systems in EGO), but the full
waveforms give errors that are small compared to the largest possible value
consistent with the Kerr bound. This suggests a way of finding out if one or
both of the component objects violate this bound. We also briefly discuss the
effect of amplitude corrections on parameter estimation in Initial LIGO.Comment: 28 pages, many figures. Final version accepted by CQG. More in-depth
treatment of component mass errors and detectability of Kerr bound
violations; improved presentatio
Bayesian inference on compact binary inspiral gravitational radiation signals in interferometric data
Presented is a description of a Markov chain Monte Carlo (MCMC) parameter
estimation routine for use with interferometric gravitational radiational data
in searches for binary neutron star inspiral signals. Five parameters
associated with the inspiral can be estimated, and summary statistics are
produced. Advanced MCMC methods were implemented, including importance
resampling and prior distributions based on detection probability, in order to
increase the efficiency of the code. An example is presented from an
application using realistic, albeit fictitious, data.Comment: submitted to Classical and Quantum Gravity. 14 pages, 5 figure
Compact Binary Coalescences in the Band of Ground-based Gravitational-Wave Detectors
As the ground-based gravitational-wave telescopes LIGO, Virgo, and GEO 600
approach the era of first detections, we review the current knowledge of the
coalescence rates and the mass and spin distributions of merging neutron-star
and black-hole binaries. We emphasize the bi-directional connection between
gravitational-wave astronomy and conventional astrophysics. Astrophysical input
will make possible informed decisions about optimal detector configurations and
search techniques. Meanwhile, rate upper limits, detected merger rates, and the
distribution of masses and spins measured by gravitational-wave searches will
constrain astrophysical parameters through comparisons with astrophysical
models. Future developments necessary to the success of gravitational-wave
astronomy are discussed.Comment: Replaced with version accepted by CQG
Status of NINJA: the Numerical INJection Analysis project
The 2008 NRDA conference introduced the Numerical INJection Analysis project (NINJA), a new collaborative effort between the numerical relativity community and the data analysis community. NINJA focuses on modeling and searching for gravitational wave signatures from the coalescence of binary system of compact objects. We review the scope of this collaboration and the components of the first NINJA project, where numerical relativity groups shared waveforms and data analysis teams applied various techniques to detect them when embedded in colored Gaussian noise
Cell-cell adhesion proteins in melanocytic pilomatrix carcinoma
Tumors of the matrix of rigid structures include matrical tumors of the hairs, nails, and teeth. These tumors share similar phenotypical and signaling features. Although benign matrical hair tumors are among the most common of these tumors, hair matrix tumors containing pigmented melanocytes are very rare. The malignant variant called melanocytic pilomatrix carcinoma contains benign colonizing dendritic melanocytes admixed with the carcinomatous follicular matrical cells
A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007
We present the results of the first search for gravitational wave bursts
associated with high energy neutrinos. Together, these messengers could reveal
new, hidden sources that are not observed by conventional photon astronomy,
particularly at high energy. Our search uses neutrinos detected by the
underwater neutrino telescope ANTARES in its 5 line configuration during the
period January - September 2007, which coincided with the fifth and first
science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed
for candidate gravitational-wave signals coincident in time and direction with
the neutrino events. No significant coincident events were observed. We place
limits on the density of joint high energy neutrino - gravitational wave
emission events in the local universe, and compare them with densities of
merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at
http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access
area to figures, tables at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000
- …