46 research outputs found

    Weak Lensing Mass Reconstruction of the Galaxy Cluster Abell 209

    Get PDF
    Weak lensing applied to deep optical images of clusters of galaxies provides a powerful tool to reconstruct the distribution of the gravitating mass associated to these structures. We use the shear signal extracted by an analysis of deep exposures of a region centered around the galaxy cluster Abell 209, at redshift z=0.2, to derive both a map of the projected mass distribution and an estimate of the total mass within a characteristic radius. We use a series of deep archival R-band images from CFHT-12k, covering an area of 0.3 deg^2. We determine the shear of background galaxy images using a new implementation of the modified Kaiser-Squires-Broadhurst pipeline for shear determination, which we has been tested against the ``Shear TEsting Program 1 and 2'' simulations. We use mass aperture statistics to produce maps of the 2 dimensional density distribution, and parametric fits using both Navarro-Frenk-White (NFW) and singular-isothermal-sphere profiles to constrain the total mass. The projected mass distribution shows a pronounced asymmetry, with an elongated structure extending from the SE to the NW. This is in general agreement with the optical distribution previously found by other authors. A similar elongation was previously detected in the X-ray emission map, and in the distribution of galaxy colours. The circular NFW mass profile fit gives a total mass of M_{200} = 7.7^{+4.3}_{-2.7} 10^{14} solar masses inside the virial radius r_{200} = 1.8\pm 0.3 Mpc. The weak lensing profile reinforces the evidence for an elongated structure of Abell 209, as previously suggested by studies of the galaxy distribution and velocities.Comment: accepted by A&A, 15 pages, 11 figure

    A New Window of Exploration in the Mass Spectrum: Strong Lensing by Galaxy Groups in the SL2S

    Get PDF
    The existence of strong lensing systems with Einstein radii (Re) covering the full mass spectrum, from ~1-2" (produced by galaxy scale dark matter haloes) to >10" (produced by galaxy cluster scale haloes) have long been predicted. Many lenses with Re around 1-2" and above 10" have been reported but very few in between. In this article, we present a sample of 13 strong lensing systems with Re in the range 3"- 8", i.e. systems produced by galaxy group scale dark matter haloes, spanning a redshift range from 0.3 to 0.8. This opens a new window of exploration in the mass spectrum, around 10^{13}- 10^{14} M_{sun}, which is a crucial range for understanding the transition between galaxies and galaxy clusters. Our analysis is based on multi-colour CFHTLS images complemented with HST imaging and ground based spectroscopy. Large scale properties are derived from both the light distribution of the elliptical galaxies group members and weak lensing of the faint background galaxy population. On small scales, the strong lensing analysis yields Einstein radii between 2.5" and 8". On larger scales, the strong lenses coincide with the peak of the light distribution, suggesting that mass is traced by light. Most of the luminosity maps have complicated shapes, indicating that these intermediate mass structures are dynamically young. Fitting the reduced shear with a Singular Isothermal Sphere, we find sigma ~ 500 km/s and an upper limit of ~900 km/s for the whole sample. The mass to light ratio for the sample is found to be M/L_i ~ 250 (solar units, corrected for evolution), with an upper limit of 500. This can be compared to mass to light ratios of small groups (with sigma ~ 300 km/s and galaxy clusters with sigma > 1000 km/s, thus bridging the gap between these mass scales.Comment: A&A Accepted. Draft with Appendix images can be found at http://www.dark-cosmology.dk/~marceau/groups_sl2s.pd

    Global Properties of the Rich Cluster ABCG 209 at z~0.2. Spectroscopic and Photometric Catalogue

    Full text link
    This paper is aimed at giving an overview of the global properties of the rich cluster of galaxies ABCG 209. This is achieved by complementing the already available data with new medium resolution spectroscopy and NIR photometry which allow us to i) analyse in detail the cluster dynamics, distinguishing among galaxies belonging to different substructures and deriving their individual velocity distributions, using a total sample of 148 galaxies in the cluster region, of which 134 belonging to the cluster; ii) derive the cluster NIR luminosity function; iii) study the Kormendy relation and the photometric plane of cluster early-type galaxies (ETGs). Finally we provide an extensive photometric (optical and NIR) and spectroscopic dataset for such a complex system to be used in further analyses investigating the nature, formation and evolution of rich clusters of galaxies. The observational scenario confirms that ABCG 209 is presently undergoing strong dynamical evolution with the merging of two or more subclumps. This interpretation is also supported by the detection of a radio halo (Giovannini et al. 2006) suggesting that there is a recent or ongoing merging. Cluster ETGs follow a Kormendy relation whose slope is consistent with previous studies both at optical and NIR wavelengths. We investigate the origin of the intrinsic scatter of the photometric plane due to trends of stellar populations, using line indices as indicators of age, metallicity and alpha/Fe enhancement. We find that the chemical evolution of galaxies could be responsible for the intrinsic dispersion of the Photometric Plane.Comment: 39 pages, 17 figures, MNRAS in pres

    Cluster Lenses

    Get PDF
    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining to cluster formation and evolution, as well as constraining the nature of dark matter; (ii) the study of the lensed objects - probing the properties of the background lensed galaxy population - which is statistically at higher redshifts and of lower intrinsic luminosity thus enabling the probing of galaxy formation at the earliest times right up to the Dark Ages; and (iii) the study of the geometry of the Universe - as the strength of lensing depends on the ratios of angular diameter distances between the lens, source and observer, lens deflections are sensitive to the value of cosmological parameters and offer a powerful geometric tool to probe Dark Energy. In this review, we present the basics of cluster lensing and provide a current status report of the field.Comment: About 120 pages - Published in Open Access at: http://www.springerlink.com/content/j183018170485723/ . arXiv admin note: text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author

    HCN emission from translucent gas and UV-illuminated cloud edges revealed by wide-field IRAM 30m maps of Orion B GMC: Revisiting its role as tracer of the dense gas reservoir for star formation

    Get PDF
    We present 5 deg^2 (~250 pc^2) HCN, HNC, HCO+, and CO J=1-0 maps of the Orion B GMC, complemented with existing wide-field [CI] 492 GHz maps, as well as new pointed observations of rotationally excited HCN, HNC, H13CN, and HN13C lines. We detect anomalous HCN J=1-0 hyperfine structure line emission almost everywhere in the cloud. About 70% of the total HCN J=1-0 luminosity arises from gas at A_V < 8 mag. The HCN/CO J=1-0 line intensity ratio shows a bimodal behavior with an inflection point at A_V < 3 mag typical of translucent gas and UV-illuminated cloud edges. We find that most of the HCN J=1-0 emission arises from extended gas with n(H2) < 10^4 cm^-3, even lower density gas if the ionization fraction is > 10^-5 and electron excitation dominates. This result explains the low-A_V branch of the HCN/CO J=1-0 intensity ratio distribution. Indeed, the highest HCN/CO ratios (~0.1) at A_V < 3 mag correspond to regions of high [CI] 492 GHz/CO J=1-0 intensity ratios (>1) characteristic of low-density PDRs. Enhanced FUV radiation favors the formation and excitation of HCN on large scales, not only in dense star-forming clumps. The low surface brightness HCN and HCO+ J=1-0 emission scale with I_FIR (a proxy of the stellar FUV radiation field) in a similar way. Together with CO J=1-0, these lines respond to increasing I_FIR up to G0~20. On the other hand, the bright HCN J=1-0 emission from dense gas in star-forming clumps weakly responds to I_FIR once the FUV radiation field becomes too intense (G0>1500). The different power law scalings (produced by different chemistries, densities, and line excitation regimes) in a single but spatially resolved GMC resemble the variety of Kennicutt-Schmidt law indexes found in galaxy averages. As a corollary for extragalactic studies, we conclude that high HCN/CO J=1-0 line intensity ratios do not always imply the presence of dense gas.Comment: accepted for publication in A&A. 24 pages, 18 figures, plus Appendix. Abridged Abstract. English language not edite

    Deep learning denoising by dimension reduction: Application to the ORION-B line cubes

    Get PDF
    Context. The availability of large bandwidth receivers for millimeter radio telescopes allows the acquisition of position-position-frequency data cubes over a wide field of view and a broad frequency coverage. These cubes contain much information on the physical, chemical, and kinematical properties of the emitting gas. However, their large size coupled with inhomogenous signal-to-noise ratio (SNR) are major challenges for consistent analysis and interpretation.Aims. We search for a denoising method of the low SNR regions of the studied data cubes that would allow to recover the low SNR emission without distorting the signals with high SNR.Methods. We perform an in-depth data analysis of the 13 CO and C 17 O (1 -- 0) data cubes obtained as part of the ORION-B large program performed at the IRAM 30m telescope. We analyse the statistical properties of the noise and the evolution of the correlation of the signal in a given frequency channel with that of the adjacent channels. This allows us to propose significant improvements of typical autoassociative neural networks, often used to denoise hyperspectral Earth remote sensing data. Applying this method to the 13 CO (1 -- 0) cube, we compare the denoised data with those derived with the multiple Gaussian fitting algorithm ROHSA, considered as the state of the art procedure for data line cubes.Results. The nature of astronomical spectral data cubes is distinct from that of the hyperspectral data usually studied in the Earth remote sensing literature because the observed intensities become statistically independent beyond a short channel separation. This lack of redundancy in data has led us to adapt the method, notably by taking into account the sparsity of the signal along the spectral axis. The application of the proposed algorithm leads to an increase of the SNR in voxels with weak signal, while preserving the spectral shape of the data in high SNR voxels.Conclusions. The proposed algorithm that combines a detailed analysis of the noise statistics with an innovative autoencoder architecture is a promising path to denoise radio-astronomy line data cubes. In the future, exploring whether a better use of the spatial correlations of the noise may further improve the denoising performances seems a promising avenue. In addition

    Evolution of Gaussian wave packets in capillary jets

    Get PDF
    A temporal analysis of the evolution of Gaussian wave packets in cylindrical capillary jets is presented through both a linear two-mode formulation and a one-dimensional nonlinear numerical scheme. These analyses are normally applicable to arbitrary initial conditions but our study focuses on pure-impulsive ones. Linear and nonlinear findings give consistent results in the stages for which the linear theory is valid. The inverse Fourier transforms representing the formal linear solution for the jet shape is both numerically evaluated and approximated by closed formulas. After a transient, these formulas predict an almost Gaussian-shape deformation with (i) a progressive drift of the carrier wave number to that given by the maximum of the Rayleigh dispersion relation, (ii) a progressive increase of its bell width, and (iii) a quasi-exponential growth of its amplitude. These parameters agree with those extracted from the fittings of Gaussian wave packets to the numerical simulations. Experimental results are also reported on near-Gaussian pulses perturbing the exit velocity of a 2 mm diameter water jet. The possibility of controlling the breakup location along the jet and other features, such as pinch-off simultaneity, are demonstrated

    SINTESIS MAGNETIT (Fe3O4) NANOPARTIKEL DENGAN NATRIUM DODESIL SULFAT

    Get PDF
    Telah dilakukan sintesis magnetit (Fe3O4) nanopartikel dengan Natrium Dodesil Sulfat (NaDS). Penelitian ini bertujuan untuk mengetahui pengaruh NaDS terhadap karakter kimia dan fisik magnetit nanopartikel hasil sintesis dengan metode kopresipitasi. Sintesis magnetit nanopartikel dilakukan dengan mereaksikan FeSO4.7H2O dan FeCl3.6H2O dengan perbandingan mol 1:2 serta natrium hidroksida (NaOH) sebagai presipitan dengan proses pengadukan pada suhu 60 °C selama 2 jam. Kajian pengaruh surfaktan pada sintesis magnetit nanopartikel dilakukan dengan variasi konsentrasi NaDS dari 1%, 3% dan 6% (b/v). Material hasil sintesis dikarakterisasi dengan spektrofotometer X-ray diffraction (XRD), Fourier Transform Infrared Spectrometer (FTIR), Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) dan Surface Area Analyzer (SAA). Hasil penelitian menunjukkan bahwa magnetit nanopartikel berhasil disintesis. Magnetit ditunjukkan oleh puncak difraksi utama pada 2θ 30,43o; 35,53o; 43,46o; 57,32o dan 62,84o. Ikatan Fe–O ditunjukkan dengan puncak serapan 565 cm-1 yang dianalisa lebih lanjut menggunakan EDX menunjukkan adanya unsur Fe dan O. Adanya surfaktan NaDS menaikkan ukuran partikel dan ukuran kristal magnetit dengan meningkatnya konsentrasi NaDS yang ditambahkan. Morfologi magnetit-NaDS semakin homogen berbentuk butiran-butiran kecil (grain) dengan ukuran partikel sekitar 30-100 nm. Ukuran kristal magnetit sebesar 11,07 nm (magnetit tanpa surfaktan); 13,62 nm (magnetit-NaDS 1%); 16,12 nm (magnetit-NaDS 3%) dan 11,17 nm (magnetit-NaDS 6%). Luas permukaan magnetit nanopartikel berturut-turut sebesar 89,67 m2/g (magnetit tanpa surfaktan); 102,50 m2/g (magnetit-NaDS 1%); 98,45 m2/g (magnetit-NaDS 3%) dan 82,92 m2/g (magnetit-NaDS 6%)

    The XXL Survey IV. Mass-temperature relation of the bright cluster sample

    Get PDF
    The XXL survey is the largest survey carried out by XMM-Newton. Covering an area of 50deg2^2, the survey contains 450\sim450 galaxy clusters out to a redshift \sim2 and to an X-ray flux limit of 5×1015ergs1cm2\sim5\times10^{-15}erg\,s^{-1}cm^{-2}. This paper is part of the first release of XXL results focussed on the bright cluster sample. We investigate the scaling relation between weak-lensing mass and X-ray temperature for the brightest clusters in XXL. The scaling relation is used to estimate the mass of all 100 clusters in XXL-100-GC. Based on a subsample of 38 objects that lie within the intersection of the northern XXL field and the publicly available CFHTLenS catalog, we derive the MWLM_{WL} of each system with careful considerations of the systematics. The clusters lie at 0.1<z<0.60.1<z<0.6 and span a range of T15keV T\simeq1-5keV. We combine our sample with 58 clusters from the literature, increasing the range out to 10keV. To date, this is the largest sample of clusters with MWLM_{WL} measurements that has been used to study the mass-temperature relation. The fit (MTbM\propto T^b) to the XXL clusters returns a slope b=1.780.32+0.37b=1.78^{+0.37}_{-0.32} and intrinsic scatter σlnMT0.53\sigma_{\ln M|T}\simeq0.53; the scatter is dominated by disturbed clusters. The fit to the combined sample of 96 clusters is in tension with self-similarity, b=1.67±0.12b=1.67\pm0.12 and σlnMT0.41\sigma_{\ln M|T}\simeq0.41. Overall our results demonstrate the feasibility of ground-based weak-lensing scaling relation studies down to cool systems of 1keV\sim1keV temperature and highlight that the current data and samples are a limit to our statistical precision. As such we are unable to determine whether the validity of hydrostatic equilibrium is a function of halo mass. An enlarged sample of cool systems, deeper weak-lensing data, and robust modelling of the selection function will help to explore these issues further
    corecore