120 research outputs found
The Lyman-a forest catalogue from the Dark Energy Spectroscopic Instrument Early Data Release
We present and validate the catalogue of Lyman-a forest fluctuations for 3D analyses using the Early Data Release (EDR) from the Dark Energy Spectroscopic Instrument (DESI) survey. We used 88 511 quasars collected from DESI Survey Validation (SV) data and the first two months of the main survey (M2). We present several improvements to the method used to extract the Lyman-a absorption fluctuations performed in previous analyses from the Sloan Digital Sky Survey (SDSS). In particular, we modify the weighting scheme and show that it can improve the precision of the correlation function measurement by more than 20 per¿cent. This catalogue can be downloaded from https://data.desi.lbl.gov/public/edr/vac/edr/lya/fuji/v0.3, and it will be used in the near future for the first DESI measurements of the 3D correlations in the Lyman-a forest.Peer ReviewedPostprint (published version
Electrochemical stripping analysis
Electrochemical stripping analysis (ESA) is a trace electroanalytical technique for the determination of metal cations, inorganic ions, organic compounds and biomolecules. It is based on a pre-concentration step of the target analyte(s), or a compound of the target, on a suitable working electrode. This is followed by a stripping step of the accumulated analyte using an electroanalytical technique. Advantages of ESA include high sensitivity and low limits of detection, multi-analyte capability, low cost of instrumentation and consumables, low power requirements, potential for on-site analysis, speciation capability and scope for indirect biosensing. This Primer covers fundamental aspects of ESA and discusses methods of pre-concentration and stripping, instrumentation, types of working electrodes and sensors, guidelines for method optimization, typical applications, data interpretation and interferences, and method limitations and workarounds. Finally, the current trends and future prospects of ESA are highlighted
Broad absorption line quasars in the Dark Energy Spectroscopic Instrument Early Data Release
Broad absorption line (BAL) quasars are characterized by gas clouds that absorb flux at the wavelength of common quasar spectral features, although blueshifted by velocities that can exceed 0.1c. BAL features are interesting as signatures of significant feedback, yet they can also compromise cosmological studies with quasars by distorting the shape of the most prominent quasar emission lines, impacting redshift accuracy and measurements of the matter density distribution traced by the Lyman α forest. We present a catalogue of BAL quasars discovered in the Dark Energy Spectroscopic Instrument (DESI) survey Early Data Release, which were observed as part of DESI Survey Validation, as well as the first two months of the main survey. We describe our method to automatically identify BAL quasars in DESI data, the quantities we measure for each BAL, and investigate the completeness and purity of this method with mock DESI observations. We mask the wavelengths of the BAL features and re-evaluate each BAL quasar redshift, finding new redshifts which are 243 km s−1 smaller on average for the BAL quasar sample. These new, more accurate redshifts are important to obtain the best measurements of quasar clustering, especially at small scales. Finally, we present some spectra of rarer classes of BALs that illustrate the potential of DESI data to identify such populations for further study
The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey
The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic
data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data
release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median
z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar
spectra, along with the data presented in previous data releases. These spectra
were obtained with the new BOSS spectrograph and were taken between 2009
December and 2011 July. In addition, the stellar parameters pipeline, which
determines radial velocities, surface temperatures, surface gravities, and
metallicities of stars, has been updated and refined with improvements in
temperature estimates for stars with T_eff<5000 K and in metallicity estimates
for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars
presented in DR8, including stars from SDSS-I and II, as well as those observed
as part of the SDSS-III Sloan Extension for Galactic Understanding and
Exploration-2 (SEGUE-2).
The astrometry error introduced in the DR8 imaging catalogs has been
corrected in the DR9 data products. The next data release for SDSS-III will be
in Summer 2013, which will present the first data from the Apache Point
Observatory Galactic Evolution Experiment (APOGEE) along with another year of
data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at
http://www.sdss3.org/dr
Mock data sets for the Eboss and DESI Lyman- forest surveys
{We present a publicly-available code to generate mock Lyman- (\lya)
forest data sets. The code is based on the Fluctuating Gunn-Peterson
Approximation (FGPA) applied to Gaussian random fields and on the use of fast
Fourier transforms (FFT). The output includes spectra of lya transmitted flux
fraction, , a quasar catalog, and a catalog of high-column-density systems.
While these three elements have realistic correlations, additional code is then
used to generate realistic quasar spectra, to add absorption by
high-column-density systems and metals, and to simulate instrumental effects.
Redshift space distortions (RSD) are implemented by including the large-scale
velocity-gradient field in the FGPA resulting in a correlation function of
that can be accurately predicted. One hundred realizations have been produced
over the 14,000 deg Dark Energy Spectroscopy Instrument (DESI) survey
footprint with 100 quasars per deg, and they are being used for the
Extended Baryon Oscillation Survey (eBOSS) and DESI surveys. The analysis of
these realizations shows that the correlation of follows the prediction
within the accuracy of eBOSS survey. The most time-consuming part of the
production occurs before application of the FGPA, and the existing pre-FGPA
forests can be used to easily produce new mock sets with modified
redshift-dependent bias parameters or observational conditions.Comment: to be submitted ot JCA
The Baryon Oscillation Spectroscopic Survey of SDSS-III
The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the
scale of baryon acoustic oscillations (BAO) in the clustering of matter over a
larger volume than the combined efforts of all previous spectroscopic surveys
of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as
i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7.
Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000
quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5.
Early results from BOSS include the first detection of the large-scale
three-dimensional clustering of the Lyman alpha forest and a strong detection
from the Data Release 9 data set of the BAO in the clustering of massive
galaxies at an effective redshift z = 0.57. We project that BOSS will yield
measurements of the angular diameter distance D_A to an accuracy of 1.0% at
redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the
same redshifts. Forecasts for Lyman alpha forest constraints predict a
measurement of an overall dilation factor that scales the highly degenerate
D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey
is complete. Here, we provide an overview of the selection of spectroscopic
targets, planning of observations, and analysis of data and data quality of
BOSS.Comment: 49 pages, 16 figures, accepted by A
3D Correlations in the Lyman- Forest from Early DESI Data
We present the first measurements of Lyman- (Ly) forest
correlations using early data from the Dark Energy Spectroscopic Instrument
(DESI). We measure the auto-correlation of Ly absorption using 88,509
quasars at , and its cross-correlation with quasars using a further
147,899 tracer quasars at . Then, we fit these correlations using
a 13-parameter model based on linear perturbation theory and find that it
provides a good description of the data across a broad range of scales. We
detect the BAO peak with a signal-to-noise ratio of , and show that
our measurements of the auto- and cross-correlations are fully-consistent with
previous measurements by the Extended Baryon Oscillation Spectroscopic Survey
(eBOSS). Even though we only use here a small fraction of the final DESI
dataset, our uncertainties are only a factor of 1.7 larger than those from the
final eBOSS measurement. We validate the existing analysis methods of
Ly correlations in preparation for making a robust measurement of the
BAO scale with the first year of DESI data
Validation of the DESI 2024 Ly forest BAO analysis using synthetic datasets
The first year of data from the Dark Energy Spectroscopic Instrument (DESI)
contains the largest set of Lyman- (Ly) forest spectra ever
observed. This data, collected in the DESI Data Release 1 (DR1) sample, has
been used to measure the Baryon Acoustic Oscillation (BAO) feature at redshift
. In this work, we use a set of 150 synthetic realizations of DESI DR1
to validate the DESI 2024 Ly forest BAO measurement. The synthetic data
sets are based on Gaussian random fields using the log-normal approximation. We
produce realistic synthetic DESI spectra that include all major contaminants
affecting the Ly forest. The synthetic data sets span a redshift range
, and are analysed using the same framework and pipeline used for
the DESI 2024 Ly forest BAO measurement. To measure BAO, we use both
the Ly auto-correlation and its cross-correlation with quasar
positions. We use the mean of correlation functions from the set of DESI DR1
realizations to show that our model is able to recover unbiased measurements of
the BAO position. We also fit each mock individually and study the population
of BAO fits in order to validate BAO uncertainties and test our method for
estimating the covariance matrix of the Ly forest correlation
functions. Finally, we discuss the implications of our results and identify the
needs for the next generation of Ly forest synthetic data sets, with
the top priority being to simulate the effect of BAO broadening due to
non-linear evolution.Comment: Supporting publication of DESI 2024 IV: Baryon Acoustic Oscillations
from the Lyman Alpha Fores
Optimal 1D Ly Forest Power Spectrum Estimation -- III. DESI early data
The one-dimensional power spectrum of the Ly forest
provides important information about cosmological and astrophysical parameters,
including constraints on warm dark matter models, the sum of the masses of the
three neutrino species, and the thermal state of the intergalactic medium. We
present the first measurement of with the quadratic maximum
likelihood estimator (QMLE) from the Dark Energy Spectroscopic Instrument
(DESI) survey early data sample. This early sample of quasars is
already comparable in size to the largest previous studies, and we conduct a
thorough investigation of numerous instrumental and analysis systematic errors
to evaluate their impact on DESI data with QMLE. We demonstrate the excellent
performance of the spectroscopic pipeline noise estimation and the impressive
accuracy of the spectrograph resolution matrix with two-dimensional image
simulations of raw DESI images that we processed with the DESI spectroscopic
pipeline. We also study metal line contamination and noise calibration
systematics with quasar spectra on the red side of the Ly emission
line. In a companion paper, we present a similar analysis based on the Fast
Fourier Transform estimate of the power spectrum. We conclude with a comparison
of these two approaches and implications for the upcoming DESI Year 1 analysis.Comment: 23 pages, 20 figures. To be published in MNRA
The Lyman- forest catalog from the Dark Energy Spectroscopic Instrument Early Data Release
We present and validate the catalog of Lyman- forest fluctuations for
3D analyses using the Early Data Release (EDR) from the Dark Energy
Spectroscopic Instrument (DESI) survey. We used 96,317 quasars collected from
DESI Survey Validation (SV) data and the first two months of the main survey
(M2). We present several improvements to the method used to extract the
Lyman- absorption fluctuations performed in previous analyses from the
Sloan Digital Sky Survey (SDSS). In particular, we modify the weighting scheme
and show that it can improve the precision of the correlation function
measurement by more than 20%. This catalog can be downloaded from
https://data.desi.lbl.gov/public/edr/vac/edr/lya/fuji/v0.3 and it will be used
in the near future for the first DESI measurements of the 3D correlations in
the Lyman- forest
- …