120 research outputs found

    The Lyman-a forest catalogue from the Dark Energy Spectroscopic Instrument Early Data Release

    Get PDF
    We present and validate the catalogue of Lyman-a forest fluctuations for 3D analyses using the Early Data Release (EDR) from the Dark Energy Spectroscopic Instrument (DESI) survey. We used 88 511 quasars collected from DESI Survey Validation (SV) data and the first two months of the main survey (M2). We present several improvements to the method used to extract the Lyman-a absorption fluctuations performed in previous analyses from the Sloan Digital Sky Survey (SDSS). In particular, we modify the weighting scheme and show that it can improve the precision of the correlation function measurement by more than 20 per¿cent. This catalogue can be downloaded from https://data.desi.lbl.gov/public/edr/vac/edr/lya/fuji/v0.3, and it will be used in the near future for the first DESI measurements of the 3D correlations in the Lyman-a forest.Peer ReviewedPostprint (published version

    Electrochemical stripping analysis

    Get PDF
    Electrochemical stripping analysis (ESA) is a trace electroanalytical technique for the determination of metal cations, inorganic ions, organic compounds and biomolecules. It is based on a pre-concentration step of the target analyte(s), or a compound of the target, on a suitable working electrode. This is followed by a stripping step of the accumulated analyte using an electroanalytical technique. Advantages of ESA include high sensitivity and low limits of detection, multi-analyte capability, low cost of instrumentation and consumables, low power requirements, potential for on-site analysis, speciation capability and scope for indirect biosensing. This Primer covers fundamental aspects of ESA and discusses methods of pre-concentration and stripping, instrumentation, types of working electrodes and sensors, guidelines for method optimization, typical applications, data interpretation and interferences, and method limitations and workarounds. Finally, the current trends and future prospects of ESA are highlighted

    Broad absorption line quasars in the Dark Energy Spectroscopic Instrument Early Data Release

    Get PDF
    Broad absorption line (BAL) quasars are characterized by gas clouds that absorb flux at the wavelength of common quasar spectral features, although blueshifted by velocities that can exceed 0.1c. BAL features are interesting as signatures of significant feedback, yet they can also compromise cosmological studies with quasars by distorting the shape of the most prominent quasar emission lines, impacting redshift accuracy and measurements of the matter density distribution traced by the Lyman α forest. We present a catalogue of BAL quasars discovered in the Dark Energy Spectroscopic Instrument (DESI) survey Early Data Release, which were observed as part of DESI Survey Validation, as well as the first two months of the main survey. We describe our method to automatically identify BAL quasars in DESI data, the quantities we measure for each BAL, and investigate the completeness and purity of this method with mock DESI observations. We mask the wavelengths of the BAL features and re-evaluate each BAL quasar redshift, finding new redshifts which are 243 km s−1 smaller on average for the BAL quasar sample. These new, more accurate redshifts are important to obtain the best measurements of quasar clustering, especially at small scales. Finally, we present some spectra of rarer classes of BALs that illustrate the potential of DESI data to identify such populations for further study

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr

    Mock data sets for the Eboss and DESI Lyman-α\alpha forest surveys

    Full text link
    {We present a publicly-available code to generate mock Lyman-α\alpha (\lya) forest data sets. The code is based on the Fluctuating Gunn-Peterson Approximation (FGPA) applied to Gaussian random fields and on the use of fast Fourier transforms (FFT). The output includes spectra of lya transmitted flux fraction, FF, a quasar catalog, and a catalog of high-column-density systems. While these three elements have realistic correlations, additional code is then used to generate realistic quasar spectra, to add absorption by high-column-density systems and metals, and to simulate instrumental effects. Redshift space distortions (RSD) are implemented by including the large-scale velocity-gradient field in the FGPA resulting in a correlation function of FF that can be accurately predicted. One hundred realizations have been produced over the 14,000 deg2^2 Dark Energy Spectroscopy Instrument (DESI) survey footprint with 100 quasars per deg2^{2}, and they are being used for the Extended Baryon Oscillation Survey (eBOSS) and DESI surveys. The analysis of these realizations shows that the correlation of FF follows the prediction within the accuracy of eBOSS survey. The most time-consuming part of the production occurs before application of the FGPA, and the existing pre-FGPA forests can be used to easily produce new mock sets with modified redshift-dependent bias parameters or observational conditions.Comment: to be submitted ot JCA

    The Baryon Oscillation Spectroscopic Survey of SDSS-III

    Get PDF
    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7. Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000 quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyman alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance D_A to an accuracy of 1.0% at redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyman alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.Comment: 49 pages, 16 figures, accepted by A

    3D Correlations in the Lyman-α\alpha Forest from Early DESI Data

    Full text link
    We present the first measurements of Lyman-α\alpha (Lyα\alpha) forest correlations using early data from the Dark Energy Spectroscopic Instrument (DESI). We measure the auto-correlation of Lyα\alpha absorption using 88,509 quasars at z>2z>2, and its cross-correlation with quasars using a further 147,899 tracer quasars at z1.77z\gtrsim1.77. Then, we fit these correlations using a 13-parameter model based on linear perturbation theory and find that it provides a good description of the data across a broad range of scales. We detect the BAO peak with a signal-to-noise ratio of 3.8σ3.8\sigma, and show that our measurements of the auto- and cross-correlations are fully-consistent with previous measurements by the Extended Baryon Oscillation Spectroscopic Survey (eBOSS). Even though we only use here a small fraction of the final DESI dataset, our uncertainties are only a factor of 1.7 larger than those from the final eBOSS measurement. We validate the existing analysis methods of Lyα\alpha correlations in preparation for making a robust measurement of the BAO scale with the first year of DESI data

    Validation of the DESI 2024 Lyα\alpha forest BAO analysis using synthetic datasets

    Full text link
    The first year of data from the Dark Energy Spectroscopic Instrument (DESI) contains the largest set of Lyman-α\alpha (Lyα\alpha) forest spectra ever observed. This data, collected in the DESI Data Release 1 (DR1) sample, has been used to measure the Baryon Acoustic Oscillation (BAO) feature at redshift z=2.33z=2.33. In this work, we use a set of 150 synthetic realizations of DESI DR1 to validate the DESI 2024 Lyα\alpha forest BAO measurement. The synthetic data sets are based on Gaussian random fields using the log-normal approximation. We produce realistic synthetic DESI spectra that include all major contaminants affecting the Lyα\alpha forest. The synthetic data sets span a redshift range 1.8<z<3.81.8<z<3.8, and are analysed using the same framework and pipeline used for the DESI 2024 Lyα\alpha forest BAO measurement. To measure BAO, we use both the Lyα\alpha auto-correlation and its cross-correlation with quasar positions. We use the mean of correlation functions from the set of DESI DR1 realizations to show that our model is able to recover unbiased measurements of the BAO position. We also fit each mock individually and study the population of BAO fits in order to validate BAO uncertainties and test our method for estimating the covariance matrix of the Lyα\alpha forest correlation functions. Finally, we discuss the implications of our results and identify the needs for the next generation of Lyα\alpha forest synthetic data sets, with the top priority being to simulate the effect of BAO broadening due to non-linear evolution.Comment: Supporting publication of DESI 2024 IV: Baryon Acoustic Oscillations from the Lyman Alpha Fores

    Optimal 1D Lyα\alpha Forest Power Spectrum Estimation -- III. DESI early data

    Full text link
    The one-dimensional power spectrum P1DP_{\mathrm{1D}} of the Lyα\alpha forest provides important information about cosmological and astrophysical parameters, including constraints on warm dark matter models, the sum of the masses of the three neutrino species, and the thermal state of the intergalactic medium. We present the first measurement of P1DP_{\mathrm{1D}} with the quadratic maximum likelihood estimator (QMLE) from the Dark Energy Spectroscopic Instrument (DESI) survey early data sample. This early sample of 54 60054~600 quasars is already comparable in size to the largest previous studies, and we conduct a thorough investigation of numerous instrumental and analysis systematic errors to evaluate their impact on DESI data with QMLE. We demonstrate the excellent performance of the spectroscopic pipeline noise estimation and the impressive accuracy of the spectrograph resolution matrix with two-dimensional image simulations of raw DESI images that we processed with the DESI spectroscopic pipeline. We also study metal line contamination and noise calibration systematics with quasar spectra on the red side of the Lyα\alpha emission line. In a companion paper, we present a similar analysis based on the Fast Fourier Transform estimate of the power spectrum. We conclude with a comparison of these two approaches and implications for the upcoming DESI Year 1 analysis.Comment: 23 pages, 20 figures. To be published in MNRA

    The Lyman-α\alpha forest catalog from the Dark Energy Spectroscopic Instrument Early Data Release

    Full text link
    We present and validate the catalog of Lyman-α\alpha forest fluctuations for 3D analyses using the Early Data Release (EDR) from the Dark Energy Spectroscopic Instrument (DESI) survey. We used 96,317 quasars collected from DESI Survey Validation (SV) data and the first two months of the main survey (M2). We present several improvements to the method used to extract the Lyman-α\alpha absorption fluctuations performed in previous analyses from the Sloan Digital Sky Survey (SDSS). In particular, we modify the weighting scheme and show that it can improve the precision of the correlation function measurement by more than 20%. This catalog can be downloaded from https://data.desi.lbl.gov/public/edr/vac/edr/lya/fuji/v0.3 and it will be used in the near future for the first DESI measurements of the 3D correlations in the Lyman-α\alpha forest
    corecore