153 research outputs found
Paediatric HIV - Looking beyond CD4 counts
Paediatric HIV remains a significant health and social challenge in sub-Saharan Africa despite many countries gaining improved access to antiretroviral treatment. Paediatric HIV affects multiple body systems and has the potential to cause wide ranging impairments as well as activity and participation limitations. The aim of this paper is to highlight some of the impairments that remain, despite the children having access to better medical care, in order to establish a possible role for physiotherapists. Nine studies conducted through the department of physiotherapy at the University of the Witwatersrand, South Africa are presented. The results of these studies demonstrate the neurodevelopmental, musculoskeletal, respiratory and quality of life challenges which children infected with HIV as well as their caregivers continue to face. The need for long term, multidisciplinary follow up of children infected with HIV is emphasized
Molecular evolution in Panagrolaimus nematodes: origins of parthenogenesis, hermaphroditism and the Antarctic species P. davidi
10.1186/1471-2148-9-15BMC Evolutionary Biology911
Radiative Models of Sagittarius A* and M87 from Relativistic MHD Simulations
Ongoing millimeter VLBI observations with the Event Horizon Telescope allow
unprecedented study of the innermost portion of black hole accretion flows.
Interpreting the observations requires relativistic, time-dependent physical
modeling. We discuss the comparison of radiative transfer calculations from
general relativistic MHD simulations of Sagittarius A* and M87 with current and
future mm-VLBI observations. This comparison allows estimates of the viewing
geometry and physical conditions of the Sgr A* accretion flow. The viewing
geometry for M87 is already constrained from observations of its large-scale
jet, but, unlike Sgr A*, there is no consensus for its millimeter emission
geometry or electron population. Despite this uncertainty, as long as the
emission region is compact, robust predictions for the size of its jet
launching region can be made. For both sources, the black hole shadow may be
detected with future observations including ALMA and/or the LMT, which would
constitute the first direct evidence for a black hole event horizon.Comment: 8 pages, 2 figures, submitted to the proceedings of AHAR 2011: The
Central Kiloparse
GRMHD simulations of accretion onto Sgr A*: How important are radiative losses?
We present general relativistic magnetohydrodynamic (GRMHD) numerical
simulations of the accretion flow around the supermassive black hole in the
Galactic centre, Sagittarius A* (Sgr A*). The simulations include for the first
time radiative cooling processes (synchrotron, bremsstrahlung, and inverse
Compton) self-consistently in the dynamics, allowing us to test the common
simplification of ignoring all cooling losses in the modeling of Sgr A*. We
confirm that for Sgr A*, neglecting the cooling losses is a reasonable
approximation if the Galactic centre is accreting below ~10^{-8} Msun/yr i.e.
Mdot < 10^{-7} Mdot_Edd. But above this limit, we show that radiative losses
should be taken into account as significant differences appear in the dynamics
and the resulting spectra when comparing simulations with and without cooling.
This limit implies that most nearby low-luminosity active galactic nuclei are
in the regime where cooling should be taken into account.
We further make a parameter study of axisymmetric gas accretion around the
supermassive black hole at the Galactic centre. This approach allows us to
investigate the physics of gas accretion in general, while confronting our
results with the well studied and observed source, Sgr A*, as a test case. We
confirm that the nature of the accretion flow and outflow is strongly dependent
on the initial geometry of the magnetic field. For example, we find it
difficult, even with very high spins, to generate powerful outflows from discs
threaded with multiple, separate poloidal field loops.Comment: Resubmitted to MNRAS, including modifications in response to referee
report. 13 pages, 15 figure
Overcoming challenges on an international project to advance systems engineering
The Body of Knowledge and Curriculum to Advance Systems Engineering (BKCASE) project's dual product development cycle spanned a three‐year period from the September 2009 to December, 2012. During this timeframe, BKCASE authors met quarterly at various locations, primarily in various regions of the United States, but also in Stockholm, Sweden; Toulouse, France; London, England; and Rome, Italy (BKCASE, 2009–2019). The team successfully worked through challenges and differences to produce The Guide to the Systems Engineering Body of Knowledge (SEBoK) wiki and a Graduate Reference Curriculum for Systems Engineering (GRCSE) publication. This article is a collection of personal stories from the team members that focus on overcoming obstacles to successfully produce the final published products
Ocean water vapor and cloud liquid water trends from 1992 to 2005 TOPEX Microwave Radiometer data
The continuous 1992–2005 data set of the TOPEX Microwave Radiometer (TMR) has been reprocessed to provide global, zonal, and regional scale histories of overocean integrated water vapor (IWV) and cloud liquid water (CLW). Results indicate well-defined trends in IWV on global and hemisphere scales, with values of 1.8 ± 0.4%/decade (60°S–60°N), 2.4 ± 0.4%/decade (0–60°N), and 1.0 ± 0.5%/decade (0–60°S). The uncertainties represent 1 standard deviation of the regressed slope parameter adjusted for lag 1 autocorrelation. These results are comparable to earlier results based on analyses of the multiinstrument SSM/I ocean measurements beginning in 1988. For the 1992–2005 interval, comparisons between SSM/I- and TMR-derived IWV trends show remarkable agreement, with global trends differing by less than 0.3%/decade, comparable to the statistical uncertainty level and about one-sixth of the global TMR-derived trend. Latitudinal and regional analyses of IWV trends show large variability about the global mean, with synoptic scale variations of IWV trends ranging from ∼−8 to +8%/decade. Averaged over 5° latitude bands the IWV trends reveal a near zero minimum in the Southern Tropical Pacific and maximum values of ∼4%/decade over the 30–40N latitude band. Comparisons with band latitude averaged SST data over the same 1992–2005 interval roughly match a delta_IWV/delta_SST trend scaling of ∼11%/K, consistent with previously observed tropical and midlatitude seasonal variability. TMR-derived CLW trends are fractionally comparable to the IWV trends. The CLW values are 1.5 ± 0.6%/decade (60°S–60°N), 2.0 ± 0.8%/decade (0–60°N), and 1.1 ± 0.8%/decade (0–60°S). When scaled to global mean CLW derived from SSM/I and compared seasonally, the TMR CLW variations exhibit excellent tracking with the SSM/I results. Unlike IWV, however, the CLW statistical uncertainties do not likely reflect the dominant error component in the retrieved trends. The 1992–2005 CLW trend estimates were particularly sensitive to short-term trends in the first and last 2 years of the TMR archive. Additional errors difficult to quantify include strong aliasing effects from precipitation cells and uncertainties in the radiative transfer models utilized in the generation of the TMR CLW algorithm
Recommended from our members
The observed state of the water cycle in the early twenty-first century
Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 8289–8318, doi:10.1175/JCLI-D-14-00555.1.This study quantifies mean annual and monthly fluxes of Earth’s water cycle over continents and ocean basins during the first decade of the millennium. To the extent possible, the flux estimates are based on satellite measurements first and data-integrating models second. A careful accounting of uncertainty in the estimates is included. It is applied within a routine that enforces multiple water and energy budget constraints simultaneously in a variational framework in order to produce objectively determined optimized flux estimates. In the majority of cases, the observed annual surface and atmospheric water budgets over the continents and oceans close with much less than 10% residual. Observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, often nearing or exceeding 20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans. The residuals in South America and Africa tend to be smaller, possibly because cold land processes are negligible. Fluxes were poorly observed over the Arctic Ocean, certain seas, Antarctica, and the Australasian and Indonesian islands, leading to reliance on atmospheric analysis estimates. Many of the satellite systems that contributed data have been or will soon be lost or replaced. Models that integrate ground-based and remote observations will be critical for ameliorating gaps and discontinuities in the data records caused by these transitions. Continued development of such models is essential for maximizing the value of the observations. Next-generation observing systems are the best hope for significantly improving global water budget accounting.This research was funded by multiple
grants from NASA’s Energy and Water Cycle
Study (NEWS) program.2016-05-0
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
HLA Class I Binding of HBZ Determines Outcome in HTLV-1 Infection
CD8(+) T cells can exert both protective and harmful effects on the virus-infected host. However, there is no systematic method to identify the attributes of a protective CD8(+) T cell response. Here, we combine theory and experiment to identify and quantify the contribution of all HLA class I alleles to host protection against infection with a given pathogen. In 432 HTLV-1-infected individuals we show that individuals with HLA class I alleles that strongly bind the HTLV-1 protein HBZ had a lower proviral load and were more likely to be asymptomatic. We also show that in general, across all HTLV-1 proteins, CD8(+) T cell effectiveness is strongly determined by protein specificity and produce a ranked list of the proteins targeted by the most effective CD8(+) T cell response through to the least effective CD8(+) T cell response. We conclude that CD8(+) T cells play an important role in the control of HTLV-1 and that CD8(+) cells specific to HBZ, not the immunodominant protein Tax, are the most effective. We suggest that HBZ plays a central role in HTLV-1 persistence. This approach is applicable to all pathogens, even where data are sparse, to identify simultaneously the HLA Class I alleles and the epitopes responsible for a protective CD8(+) T cell response
- …