125 research outputs found

    Extracellular vesicles and their current role in cancer immunotherapy

    Get PDF
    Extracellular vesicles (EVs) are natural particles formed by the lipid bilayer and released from almost all cell types to the extracellular environment both under physiological conditions and in presence of a disease. EVs are involved in many biological processes including intercellular communication, acting as natural carriers in the transfer of various biomolecules such as DNA, various RNA types, proteins and different phospholipids. Thanks to their transfer and targeting abilities, they can be employed in drug and gene delivery and have been proposed for the treatment of different diseases, including cancer. Recently, the use of EVs as biological carriers has also been extended to cancer immunotherapy. This new technique of cancer treatment involves the use of EVs to transport molecules capable of triggering an immune response to damage cancer cells. Several studies have analyzed the possibility of using EVs in new cancer vaccines, which represent a particular form of immunotherapy. In the literature there are only few publications that systematically group and collectively discuss these studies. Therefore, the purpose of this review is to illustrate and give a partial reorganization to what has been produced in the literature so far. We provide basic notions on cancer immunotherapy and describe some clinical trials in which therapeutic cancer vaccines are tested. We thus focus attention on the potential of EV-based therapeutic vaccines in the treatment of cancer patients, overviewing the clinically relevant trials, completed or still in progress, which open up new perspectives in the fight against cancer

    Effects of Cognitive Remediation on Cognition, Metacognition, and Social Cognition in Patients With Schizophrenia

    Get PDF
    We aimed to evaluate in a sample of outpatients with schizophrenia (SCZ) the effectiveness of a cognitive remediation (CR) program (through the use of the Cogpack software) [computer-assisted CR (CACR)] in addition to standard therapy on cognitive outcomes as compared with that in a control active group (CAG) and to highlight a possible effect on social cognition (SC), metacognition, symptomatology, and real-world functioning. Of the 66 subjects enrolled, 33 were allocated to CACR and 33 to the CAG. Twenty-three patients in the CACR group and 25 subjects in the CAG completed at least 80% of the 48 prescribed CACR sessions, performed twice a week, for a total of 24 weeks of treatment. A significant time × group interaction was evident, suggesting that patients undergoing CACR intervention improved in specific metacognitive sub-functions (understanding others' mind and mastery), some cognitive domains (verbal learning processing speed, visual learning, reasoning, and problem solving) (h(2) = 0.126), depressive symptoms, SC, awareness of symptoms, and real-world functioning domains (community activities and interpersonal relationships) more significantly than did patients undergoing CAG. The most noticeable differential improvement between the two groups was detected in two metacognitive sub-functions (understanding others' mind and mastery), in verbal learning, in interpersonal relationship, and in depressive symptomatology, achieving large effect sizes. These are encouraging findings in support of the possible integration of CACR in rehabilitation practice in the Italian mental health services

    Smart Shockwave Responsive Titania-Based Nanoparticles for Cancer Treatment

    Get PDF
    Nanomedicine is an emerging treatment approach for many cancers, characterized by having high sensitivity and selectivity for tumor cells and minimal toxic effects induced by the conventional chemotherapeutics. In these context, smart nanoparticles (NPs) are getting increasingly relevant in the development of new therapies. NPs with specific chemical composition and/or structure and being stimuli-responsive to magnetic, light or ultrasound waves are new promising tools. In the present work, amorphous-titania propyl-amine functionalized (a-TiO2-NH2) NPs, coated with bovine serum albumin (BSA), are stimulated with high energy shock waves to induce cytotoxic effects in cancer cells. First, a new method to coat a-TiO2-NH2 NPs with BSA (a-TiO2-NH2/BSA) was proposed, allowing for a high dispersion and colloidal stability in a cell culture media. The a-TiO2-NH2/BSA NPs showed no cancer cell cytotoxicity. In a second step, the use of shock waves to stimulate a-TiO2-NH2/BSA NPs, was evaluated and optimized. A systematic study was performed in in vitro cell culture aiming to impair the cancer cell viability: NP concentrations, time steps and single versus multiple shock waves treatments were studied. The obtained results highlighted the relevance of NPs design and administration time point with respect to the shock wave treatment and allow to hypothesize mechanical damages to cells

    3D printable acrylate polydimethylsiloxane resins for cell culture and drug testing

    Get PDF
    Nowadays, most of the microfluidic devices for biological applications are fabricated with only few well-established materials. Among these, polydimethylsiloxane (PDMS) is the most used and known. However, it has many limitations, like the operator dependent and time-consuming manufacturing technique and the high molecule retention. TEGORad or Acrylate PDMS is an acrylate polydimethylsiloxane copolymer that can be 3D printed through Digital Light Processing (DLP), a technology that can boast reduction of waste products and the possibility of low cost and rapid manufacturing of complex components. Here, we developed 3D printed Acrylate PDMS-based devices for cell culture and drug testing. Our in vitro study shows that Acrylate PDMS can sustain cell growth of lung and skin epithelium, both of great interest for in vitro drug testing, without causing any genotoxic effect. Moreover, flow experiments with a drug-like solution (Rhodamine 6G) show that Acrylate PDMS drug retention is negligible unlike the high signal shown by PDMS. In conclusion, the study demonstrates that this acrylate resin can be an excellent alternative to PDMS to design stretchable platforms for cell culture and drug testing

    Neurofilament light chain: a specific serum biomarker of axonal damage severity in rat models of Chemotherapy-Induced Peripheral Neurotoxicity

    Get PDF
    Chemotherapy-Induced Peripheral Neurotoxicity (CIPN) is a severe and long-lasting side effect of anticancer therapy, which can severely impair patients’ quality of life. It is a sensory and length-dependent neuropathy, which predominantly affects large myelinated fibers. Easy and reliable monitoring of CIPN in patients is still an unmet clinical need. Since increasing clinical evidence supports the potential use of neurofilament light chain (NfL) as a biomarker of axonal injury, in this study we measured serum NfL levels in animals chronically treated with cisplatin (CDDP) and paclitaxel (PTX), two antineoplastic drugs with different neuronal targets. Wistar rats were treated with CDDP (2 mg/kg i.p. twice/week for 4 weeks) or PTX (10 mg/kg i.v. once/week for 4 weeks). Repeated serum NfL quantification was obtained using the Single Molecule Array (Simoa) technology. The onset and progression of peripheral neurotoxicity were evaluated through neurophysiology, morphological assessments and intraepidermal nerve fibers density quantification. Our results showed that serum NfL measurements correlated with the severity of axonal damage. In fact, both treatments induced serum NfL increase, but higher levels were evidenced in PTX-treated animals, compared with CDDP-treated rats, affected by a milder neurotoxicity. Notably, also the timing of the NfL level increase was associated with the severity of morphological and functional alterations of axonal structure. Therefore, NfL could be a useful biomarker for axonal damage in order to follow the onset and severity of axonal degeneration and possibly limit the occurrence of serious PNS disease

    Assessment of Patient Satisfaction Using a New Augmented Reality Simulation Software for Breast Augmentation: A Prospective Study

    Get PDF
    Background: Breast augmentation is one of the most frequently performed plastic surgery procedures. Providing patients with realistic 3D simulations of breast augmentation outcomes is becoming increasingly common. Until recently, such programs were expensive and required significant equipment, training, and office space. New simple user-friendly programs have been developed, but to date there remains a paucity of objective evidence comparing these 3D simulations with post-operative outcomes. The aim of this study is to assess the aesthetic similarity between a preoperative 3D simulation generated using Arbrea breast simulation software and real post-operative outcomes, with a focus on patient satisfaction. Methods: The authors conducted a prospective study of patients requiring breast augmentation. Patients were asked to assess how realistic the simulation was compared to the one-year post-operative result using the authors’ grading scale for breast augmentation simulation assessment. Patient satisfaction with the simulations was assessed using a satisfaction visual analogue scale (VAS) ranging from 0 (not at all satisfied) to 10 (very satisfied). Patient satisfaction with the surgical outcome was assessed using the BREAST-Q Augmentation Module. Results: All patients were satisfied with the simulations and with the attained breast volume, with a mean VAS score of 8.2   1.2. The mean simulation time took 90 s on average. The differences between the pre-operative and one-year post-operative values of the three BREAST-Q assessments were found to be statistically significant (p < 0.001). Conclusions: Three-dimensional simulation is becoming increasingly common in pre-operative planning for breast augmentation. The present study aimed to assess the degree of similarity of three-dimensional simulations generated using Arbrea Breast Software and found that the use of the software provided a very satisfying representation for patients undergoing breast augmentation. However, we recommend informing patients that only the volume simulation is extremely accurate. On the other hand, it is necessary to not guarantee an absolute correspondence regarding the breast shape between the simulation and the post-operative result

    Islet transplantation and insulin administration relieve long-term complications and rescue the residual endogenous pancreatic cells

    Get PDF
    Islet transplantation is a poorly investigated Long-term strategy for insulin replacement and for treatment of complications in patients with diabetes. We investigated whether islet transplantation and insulin treatment can relieve diabetic neuropathy and rescue the residual endogenous pancreatic beta cells. We used a multimodal approach, with five groups of Sprague-Dawley rats studied for 8 months: control rats, diabetic rats, insulin-treated diabetic rats with moderate or mild hyperglycemia, and diabetic rats transplanted with microencapsulated islets. Islet transplantation normalized glycemia and increased body and muscle weight; it was also effective in reducing proteinuria and altered liver function. Transplantation significantly improved tail nerve conduction velocity, Na+-K+-ATPase activity, and morphological alterations in the sciatic nerve as evidenced by decrease in g-ratio; it also restored thermal and ameliorated mechanical nociceptive thresholds. Morphometric analysis of pancreas indicated a significant beta-cell volume increase in transplanted rats, compared with mildly and moderately hyperglycemic rats. Thus, allogeneic islet transplantation had a positive systemic effect in diabetic rats and induced regression of the established neuropathy and restitution of the typical characteristics of the islets. These findings strongly reinforce the need for improving glycemic control, not only to reverse established diabetic complications but also to improve beta-cell status in diabetic pancreas

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Multi-Target Drugs: The Trend of Drug Research and Development

    Get PDF
    Summarizing the status of drugs in the market and examining the trend of drug research and development is important in drug discovery. In this study, we compared the drug targets and the market sales of the new molecular entities approved by the U.S. Food and Drug Administration from January 2000 to December 2009. Two networks, namely, the target–target and drug–drug networks, have been set up using the network analysis tools. The multi-target drugs have much more potential, as shown by the network visualization and the market trends. We discussed the possible reasons and proposed the rational strategies for drug research and development in the future
    corecore