73 research outputs found
Ship-based contributions to global ocean, weather, and climate observing systems
The role ships play in atmospheric, oceanic, and biogeochemical observations is described with a focus on measurements made within 100 m of the ocean surface. Ships include merchant and research vessels, cruise liners and ferries, fishing vessels, coast guard, military, and other government-operated ships, yachts, and a growing fleet of automated surface vessels. The present capabilities of ships to measure essential climate/ocean variables and the requirements from a broad community to address operational, commercial, and scientific needs are described. Following the guidance from the OceanObs'19 organizing committee, the authors provide a vision to expand observations needed from ships to understand and forecast the exchanges across the ocean-atmosphere interface. The vision addresses (1) recruiting vessels to improve both spatial and temporal sampling, (2) conducting multi-variate sampling on ships, (3) raising technology readiness levels of automated shipboard sensors and ship-to-shore data communications, (4) advancing quality evaluation of observations, and (5) developing a unified data management approach for observations and metadata that meets the needs of a diverse user community. Recommendations are made focusing on integrating private and autonomous vessels into the observing system, investing in sensor and communications technology development, developing an integrated data management structure that includes all types of ships, and moving towards a quality evaluation process that will result in a subset of ships being defined as mobile reference ships that will support climate studies. We envision a future where commercial, research, and privately-owned vessels are making multivariate observations using a combination of automated and human-observed measurements. All data and metadata will be documented, tracked, evaluated, distributed, and archived to benefit users of marine data. This vision looks at ships as a holistic network, not a set of disparate commercial, research, and/or third-party activities working in isolation, to bring these communities together for the mutual benefit of all
Pacific Ocean Contribution to the Asymmetry in Eastern Indian Ocean Variability
Variations in eastern Indian Ocean upper-ocean thermal properties are assessed for the period 1970â2004, with a particular focus on asymmetric features related to opposite phases of Indian Ocean Dipole events, using high-resolution ocean model hindcasts. Sensitivity experiments, where atmospheric forcing variability is restricted to the Indian or Pacific Ocean only, support the interpretation of forcing mechanisms for large-scale asymmetric behavior in eastern Indian Ocean variability. Years are classified according to eastern Indian Ocean subsurface heat content (HC) as proxy of thermocline variations. Years characterized by anomalous low HC feature a zonal gradient in upper-ocean properties near the equator, while high events have a meridional gradient from the tropics into the subtropics. The spatial and temporal characteristics of the seasonal evolution of HC anomalies for the two cases is distinct, as is the relative contribution from Indian Ocean atmospheric forcing versus remote influences from Pacific wind forcing: low events develop rapidly during austral winter/spring in response to Indian Ocean wind forcing associated with an enhanced southeasterly monsoon driving coastal upwelling and a shoaling thermocline in the east; in contrast, formation of anomalous high eastern Indian Ocean HC is more gradual, with anomalies earlier in the year expanding from the Indonesian Throughflow (ITF) region, initiated by remote Pacific wind forcing and transmitted through the ITF via coastal wave dynamics. Implications for seasonal predictions arise with high HC events offering extended lead times for predicting thermocline variations and upper-ocean properties across the eastern Indian Ocean
Climate-driven range extension of Amphistegina (protista, foraminiferida) : models of current and predicted future ranges
© The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e54443, doi:10.1371/journal.pone.0054443.Species-range expansions are a predicted and realized consequence of global climate change. Climate warming and the poleward widening of the tropical belt have induced range shifts in a variety of marine and terrestrial species. Range expansions may have broad implications on native biota and ecosystem functioning as shifting species may perturb recipient communities. Larger symbiont-bearing foraminifera constitute ubiquitous and prominent components of shallow water ecosystems, and range shifts of these important protists are likely to trigger changes in ecosystem functioning. We have used historical and newly acquired occurrence records to compute current range shifts of Amphistegina spp., a larger symbiont-bearing foraminifera, along the eastern coastline of Africa and compare them to analogous range shifts currently observed in the Mediterranean Sea. The study provides new evidence that amphisteginid foraminifera are rapidly progressing southwestward, closely approaching Port Edward (South Africa) at 31°S. To project future species distributions, we applied a species distribution model (SDM) based on ecological niche constraints of current distribution ranges. Our model indicates that further warming is likely to cause a continued range extension, and predicts dispersal along nearly the entire southeastern coast of Africa. The average rates of amphisteginid range shift were computed between 8 and 2.7 km yearâ1, and are projected to lead to a total southward range expansion of 267 km, or 2.4° latitude, in the year 2100. Our results corroborate findings from the fossil record that some larger symbiont-bearing foraminifera cope well with rising water temperatures and are beneficiaries of global climate change.This work was supported by grants from the German Science Foundation (DFG; www.dfg.de) to ML and SL (LA 884/10-1, LA 884/5-1)
Middle-late Pleistocene deep water circulation in the southwest subtropical Pacific
International audienceThe modern ÎŽ13CDIC distribution in southwest subtropical Pacific deep waters is consistent with a regional mixing regime between water masses of open Pacific Ocean and Tasman Sea origin. This mixing regime is reconstructed across the middle-late Pleistocene using a record of benthic foraminiferal ÎŽ13C in a sediment core from the New Caledonia Trough. The relative influence on the mixing regime from open Pacific Ocean deep waters is seen to be significantly reduced during glacial in comparison to interglacial stages over the past 1.1 Ma. The spatial ÎŽ13C gradient in the Southern Ocean between deep waters entering the Tasman Sea and the open Pacific Ocean is shown to be consequently greater during glacial than interglacial stages but was generally reduced across the period of the Middle Pleistocene Transition. The existence of strong spatial chemical gradients in the glacial Southern Ocean limits its capacity to act as an enhanced sink for atmospheric carbon
Mixed layer heat/salt budget and Equatorial Under-Current dynamics in the tropical Atlantic from a joint model-observations approach [résumé de poster]
ICAWA : International Conference AWA, Lanzarote, ESP, 17-/04/2018 - 20/04/2018Climatological mixed layer heat/salt budget terms derived from a NEMO 1/4° forced model simulation and from a PREFACE observation-based product are compared in the eastern tropical Atlantic. Mean spatial patterns of mixed layer depth, SST and SSS are in good agreement despite some local biases. For the annual mean heat balance, atmospheric fluxes are quite different along the coasts, while horizontal advection mostly differs around the equator, maybe due to the low resolution of the observations (2.5°) that cannot resolve small meridional scales. The seasonal heat balance is compared in boxes off Angola, in the northeast Gulf of Guinea and in the Atlantic cold tongue. Seasonal variations of heat fluxes are correlated except in the last box, while advection is everywhere poorly correlated. For the annual mean salt balance, model and observations show similar freshwater fluxes, with larger spatial contrasts in the model, while advection mostly differs around the ITCZ. In the Benguela region, model and observations roughly agree on freshwater fluxes and advection seasonal variations. Off Angola, SSS variations are uncorrelated. The observed product does not explicitly resolve vertical diffusion, an important process for the heat/salt balance in the Gulf of Guinea. The seasonal characteristics of the simulated EUC transport are compared to observations based on cruises and moorings at 23°W. In the model, the EUC transport is slightly larger than observed on average, while its seasonal cycle is of comparable amplitude and shows a maximum around September and minimum in November, leading the observations by one month. The maximum velocity is also biased high but seasonal cycles are consistent and roughly phased with the transport seasonal cycle. The EUC core in the model is shallower than observed but with a similar seasonal cycle and coinciding maxima in depth and transport. Its latitudinal position is more south of the equator, with a seasonal cycle opposite in phase and larger than observed. A test simulation with interannual wind forcing but climatological fluxes forcing is compared to the reference simulation to identify the respective role of dynamic and thermodynamic forcing on the EUC characteristics, in particular its salinity maximum
Sea surface salinity structure of the meandering Gulf Stream revealed by SMOS sensor
International audienceMeasurements from the Soil Moisture Ocean Salinity (SMOS) satellite acquired during 2012 in the western North Atlantic are used to reveal the evolution of the sea surface salinity (SSS) structure of the meandering Gulf Stream with an unprecedented space and time resolution. Combined with in situ surface and profile measurements, satellite-derived surface currents, sea surface height (SSH), surface temperature (SST), and chlorophyll (Chl) data, SMOS SSS observations are shown to coherently delineate meanders pinching off from the current to form well-identified salty- (warm-) and fresh- (cold-) core Gulf Stream rings. A covariance analysis at two locations along the separated Gulf stream path (south of Nova Scotia and in the Gulf Stream Extension) reveals a systematically higher correlation between SSS and sea level variability than between SST and SSH during the warmer half of the year. Within (75°Wâ40°W; 30°Nâ50°N), Chl concentration is also found to significantly depend on the SSS as SST increases above 20°C
- âŠ