87 research outputs found

    The uptake of selenium by perennial ryegrass in soils of different organic matter contents receiving sheep excreta

    Get PDF
    Background and Aims The intake of selenium, an essential element for animals and humans, in ruminants is largely determined by selenium concentration in ingested forages, which take up selenium mainly from soil. Ruminant excreta is a common source of organic fertilizer, which provides both nutrients and organic matter. This study aims to unentangle the unclear effect of applying different types of ruminant excreta in soils of different organic matter contents on selenium uptake by forage. Methods Perennial ryegrass (Lolium perenne) was grown in soils of different organic matter contents. Urine and/or feces collected from sheep fed with organic or inorganic mineral supplements, including selenium, were applied to the soils. The selenium in the collected samples were analyzed using ICP-MS. The associated biogeochemical reactions were scrutinized by wet chemistry. Results The application of urine and/or feces resulted in either the same or lower selenium concentrations in perennial ryegrass. The excreta type did not affect total selenium accumulation in grass grown in low organic matter soil, whereas in high organic matter soil, feces resulted in significantly lower total selenium accumulation than urine, which was attributed to a possible interaction of selenium sorption in soil and microbial reduction of Se. Conclusion This one-time excreta application did not increase, but further decrease in some treatments, selenium concentration and accumulation in the perennial ryegrass. Consequently, to increase ruminant selenium intake, supplementing selenium directly to animals is more recommended than applying animal manure to soil, which might drive selenium reduction and decrease selenium uptake by grass

    The role of ruminant urine and faeces in the recycling of nutrients by forages

    Get PDF
    This study addresses the effect of using animal excreta on the nutritional content of forages, focusingon macro- and micro-element concentrations (nitrogen; N, phosphorus; P, sulphur; S, copper; Cu,zinc; Zn, manganese; Mn, selenium; Se) from animal feed to excreta, soil, and plants. Data were collected from pot and field trials using separate applications of sheep or cattle urine and faeces. Key findings indicate that soil organic carbon (SOC) and the type of excreta significantly influences nutrient uptake by forages, with varied responses among the seven elements defined above. Although urine contributes fewer micronutrients compared to faeces (as applied at a natural volume/mass basis, respectively), it notably improves forage yield and micronutrient accumulation, thus potentially delivering positive consequences at the farm level regarding economic performance and soil fertility when swards upon clayey soil types receive said urine in temperate agro-climatic regions (i.e., South West England in the current context). In contrast, faeces application in isolation hinders Se and Mn uptake, once again potentially delivering unintended consequences such as micronutrient deficiencies in areas of high faeces deposition. As it is unlikely that (b)ovine grazing fields will receive either urine or faeces in isolation, we also explored combined applications of both excreta types which demonstrates synergistic effects on N, Cu, and Zn uptake, with either synergistic or dilution effects being observed for P and S, depending largely on SOC levels. Additionally, interactions between excreta types can result in dilution or antagonistic effects on Mn and Se uptake. Notably, high SOC combined with faeces reduces Mn and Se in forages, raising concerns for grazed ruminant systems under certain biotic situations, e.g., due to insufficient soil Se levels typically observed in UK pastures for livestock growth. These findings underscore the importance of considering SOC and excreta nutritional composition when designing forage management to optimize nutrient uptake. It should be noted that these findings have potential ramifications for broader studies of sustainable agriculture through system-scale analyses, as the granularity of results reported herein elucidate gaps in knowledge which could affect, both positively and negatively, the interpretation of model-based environmental impact assessments of cattle and sheep production (e.g., in the case of increased yields [beneficial] or the requirement of additional synthetic supplementation [detrimental])

    Impacts of habitat heterogeneity on the provision of multiple ecosystem services in a temperate floodplain

    Get PDF
    The relationships between habitat heterogeneity and the provision of multiple ecosystem services are not well understood. This study investigates the impacts of heterogeneity in surface floodwater inundation on the productive efficiency of ecosystem service provision, and the degree to which the relative provision of these ecosystem services is evenly balanced. We analyse indicators of five services. Field data from 100 floodplain quadrats were first analysed to investigate relationships between ecosystem service indicators and floodplain hydrology. Floodplain mosaics of varying hydrological heterogeneity were then simulated using the empirical data. Simulated floodplains with higher hydrological heterogeneity were generally less efficient in providing the target indicators, because they were adapted to the particular hydrological ranges which best provided the target services. Simulated floodplains that were more heterogeneous generally provided more even levels of the target indicators by segregating provision into different habitat types. Heterogeneity in floodplain hydrology may help to balance provision of multiple ecosystem services. However, management of hydrological heterogeneity to achieve this requires a detailed understanding of the relationships between each service and habitat conditions

    Pycnogenol® and Ginkgo biloba extract: effect on peroxynitrite-oxidized sarcoplasmic reticulum Ca2+-ATPase

    Get PDF
    The effect of two natural standardized plant extracts, Pycnogenol® and EGb 761, on sarcoplasmic reticulum Ca2+-ATPase (SERCA) activity and posttranslational modifications induced by peroxynitrite was investigated to assess their possible protective role. EGb 761 was found to have a protective effect on SERCA activity in the concentration range of 5–40 µg/ml. On the other hand, Pycnogenol® caused a decrease of SERCA activity at concentrations of 25 µg/ml. EGb 761 did not prevent protein carbonyl formation upon oxidation with peroxynitrite. On the contrary, Pycnogenol® at the concentrations of 5 and 10 µg/ml significantly decreased the level of protein carbonyls by 44% and 54%, respectively. Neither Pycnogenol® nor EGb 761 exerted a protective effect against thiol group oxidation.The plant extracts studied modulated peroxynitrite-injured SERCA activity by different ways and failed to correlate with posttranslational modifications. Their effect seems to be associated with their ability to change SERCA conformation rather than by their antioxidant capacity

    Motor domain phosphorylation increases nucleotide exchange and turns MYO6 into a faster and stronger motor

    Get PDF
    Myosin motors perform many fundamental functions in eukaryotic cells by providing force generation, transport or tethering capacity. Motor activity control within the cell involves on/off switches, however, few examples are known of how myosins regulate speed or processivity and fine-tune their activity to a specific cellular task. Here, we describe a phosphorylation event for myosins of class VI (MYO6) in the motor domain, which accelerates its ATPase activity leading to a 4-fold increase in motor speed determined by actin-gliding assays, single molecule mechanics and stopped flow kinetics. We demonstrate that the serine/threonine kinase DYRK2 phosphorylates MYO6 at S267 in vitro. Single-molecule optical-tweezers studies at low load reveal that S267-phosphorylation results in faster nucleotide-exchange kinetics without change in the working stroke of the motor. The selective increase in stiffness of the acto-MYO6 complex when proceeding load-dependently into the nucleotide-free rigor state demonstrates that S267-phosphorylation turns MYO6 into a stronger motor. Finally, molecular dynamic simulations of the nucleotide-free motor reveal an alternative interaction network within insert-1 upon phosphorylation, suggesting a molecular mechanism, which regulates insert-1 positioning, turning the S267-phosphorylated MYO6 into a faster motor

    The role of left ventricular deformation in the assessment of microvascular obstruction and intramyocardial haemorrhage

    Get PDF
    In the setting of acute ST-elevation myocardial infarction (STEMI), it remains unclear which strain parameter most strongly correlates with microvascular obstruction (MVO) or intramyocardial haemorrhage (IMH). We aimed to investigate the association of MVO, IMH and convalescent left ventricular (LV) remodelling with strain parameters measured with cardiovascular magnetic resonance (CMR). Forty-three patients with reperfused STEMI and 10 age and gender matched healthy controls underwent CMR within 3-days and at 3-months following reperfused STEMI. Cine, T2-weighted, T2*-imaging and late gadolinium enhancement (LGE) imaging were performed. Infarct size, MVO and IMH were quantified. Peak global longitudinal strain (GLS), global radial strain (GRS), global circumferential strain (GCS) and their strain rates were derived by feature tracking analysis of LV short-axis, 4-chamber and 2-chamber cines. All 43 patients and ten controls completed the baseline scan and 34 patients completed 3-month scans. In multivariate regression, GLS demonstrated the strongest association with MVO or IMH (beta = 0.53, p 20%). Baseline GLS also demonstrated the strongest diagnostic performance in predicting adverse LV remodelling (AUC = 0.79; 95% CI 0.60–0.98; p = 0.03). Post-reperfused STEMI, baseline GLS was most closely associated with the presence of MVO or IMH. Baseline GLS was more strongly associated with adverse LV remodelling than other CMR parameters

    Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project

    Get PDF
    In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory

    Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns

    Get PDF
    Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike's information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk.Peer reviewe

    Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns

    Get PDF
    Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike’s information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk
    corecore