77 research outputs found

    The Escherichia coli RutR transcription factor binds at targets within genes as well as intergenic regions.

    Get PDF
    The Escherichia coli RutR protein is the master regulator of genes involved in pyrimidine catabolism. Here we have used chromatin immunoprecipitation in combination with DNA microarrays to measure the binding of RutR across the chromosome of exponentially growing E. coli cells. Twenty RutR-binding targets were identified and analysis of these targets generated a DNA consensus logo for RutR binding. Complementary in vitro binding assays showed high-affinity RutR binding to 16 of the 20 targets, with the four low-affinity RutR targets lacking predicted key binding determinants. Surprisingly, most of the DNA targets for RutR are located within coding segments of the genome and appear to have little or no effect on transcript levels in the conditions tested. This contrasts sharply with other E. coli transcription factors whose binding sites are primarily located in intergenic regions. We suggest that either RutR has yet undiscovered function or that evolution has been slow to eliminate non-functional DNA sites for RutR because they do not have an adverse effect on cell fitness

    Autoregulation of the Escherichia coli melR promoter: repression involves four molecules of MelR

    Get PDF
    The Escherichia coli MelR protein is a transcription activator that autoregulates its own promoter by repressing transcription initiation. Optimal repression requires MelR binding to a site that overlaps the melR transcription start point and to upstream sites. In this work, we have investigated the different determinants needed for optimal repression and their spatial requirements. We show that repression requires a complex involving four DNA-bound MelR molecules, and that the global CRP regulator plays little or no role

    Plasma proteomic signature predicts myeloid neoplasm risk

    Get PDF
    PURPOSE: Clonal hematopoiesis (CH) is thought to be the origin of myeloid neoplasms (MN). Yet, our understanding of the mechanisms driving CH progression to MN and clinical risk prediction of MN remains limited. The human proteome reflects complex interactions between genetic and epigenetic regulation of biological systems. We hypothesized that the plasma proteome might predict MN risk and inform our understanding of the mechanisms promoting MN development. EXPERIMENTAL DESIGN: We jointly characterized CH and plasma proteomic profiles of 46,237 individuals in the UK Biobank at baseline study entry. During 500,036 person-years of follow-up, 115 individuals developed MN. Cox proportional hazard regression was used to test for an association between plasma protein levels and MN risk. RESULTS: We identified 115 proteins associated with MN risk, of which 30% (N = 34) were also associated with CH. These were enriched for known regulators of the innate and adaptive immune system. Plasma proteomics improved the prediction of MN risk (AUC = 0.85; P = 5×10-9) beyond clinical factors and CH (AUC = 0.80). In an independent group (N = 381,485), we used inherited polygenic risk scores (PRS) for plasma protein levels to validate the relevance of these proteins toMNdevelopment. PRS analyses suggest that most MN-associated proteins we identified are not directly causally linked toMN risk, but rather represent downstream markers of pathways regulating the progression of CH to MN. CONCLUSIONS: These data highlight the role of immune cell regulation in the progression of CH to MN and the promise of leveraging multi-omic characterization of CH to improveMN risk stratification. See related commentary by Bhalgat and Taylor, p. 3095

    Transcription factor distribution in Escherichia coli: studies with FNR protein

    Get PDF
    Using chromatin immunoprecipitation (ChIP) and high-density microarrays, we have measured the distribution of the global transcription regulator protein, FNR, across the entire Escherichia coli chromosome in exponentially growing cells. Sixty-three binding targets, each located at the 5′ end of a gene, were identified. Some targets are adjacent to poorly transcribed genes where FNR has little impact on transcription. In stationary phase, the distribution of FNR was largely unchanged. Control experiments showed that, like FNR, the distribution of the nucleoid-associated protein, IHF, is little altered when cells enter stationary phase, whilst RNA polymerase undergoes a complete redistribution

    Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome

    Get PDF
    The Escherichia coli chromosome is condensed into an ill-defined structure known as the nucleoid. Nucleoid-associated DNA-binding proteins are involved in maintaining this structure and in mediating chromosome compaction. We have exploited chromatin immunoprecipitation and high-density microarrays to study the binding of three such proteins, FIS, H-NS and IHF, across the E.coli genome in vivo. Our results show that the distribution of these proteins is biased to intergenic parts of the genome, and that the binding profiles overlap. Hence some targets are associated with combinations of bound FIS, H-NS and IHF. In addition, many regions associated with FIS and H-NS are also associated with RNA polymerase

    Search for gravitational wave bursts in LIGO's third science run

    Get PDF
    We report on a search for gravitational wave bursts in data from the three LIGO interferometric detectors during their third science run. The search targets subsecond bursts in the frequency range 100-1100 Hz for which no waveform model is assumed, and has a sensitivity in terms of the root-sum-square (rss) strain amplitude of hrss ~ 10^{-20} / sqrt(Hz). No gravitational wave signals were detected in the 8 days of analyzed data.Comment: 12 pages, 6 figures. Amaldi-6 conference proceedings to be published in Classical and Quantum Gravit

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure

    Exploring the ingredients required to successfully model the placement, generation, and evolution of ice streams in the British-Irish Ice Sheet

    Get PDF
    Ice stream evolution is a major uncertainty in projections of the future of the Greenland and Antarctic Ice sheets. Accurate simulation of ice stream evolution requires an understanding of a number of “ingredients” that control the location and behaviour of ice stream flow. Here, we test the influence of geothermal heat flux, grid resolution, and bed hydrology on simulated ice streaming. The palaeo-record provides snapshots of ice stream evolution, with a particularly well constrained ice sheet being the British-Irish Ice Sheet (BIIS). We implement a new basal sliding scheme coupled with thermo-mechanics into the BISICLES ice sheet model, to simulate the evolution of the BIIS ice streams. We find that the simulated location and spacing of ice streams matches well with the empirical reconstructions of ice stream flow in terms of position and direction when simple bed hydrology is included. We show that the new basal sliding scheme allows the accurate simulation for the majority of BIIS ice streams. The extensive empirical record of the BIIS has allowed the testing of model inputs, and has helped demonstrate the skill of the ice sheet model in simulating the evolution of the location, spacing, and migration of ice streams through millennia. Simulated ice streams also prompt new empirical mapping of features indicative of streaming in the North Channel region. Ice sheet model development has allowed accurate simulation of the palaeo record, and allows for improved modelling of future ice stream behaviour
    corecore