106 research outputs found

    Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths

    Get PDF
    Publisher Copyright: © 2021 The Authors, some rights reserved.Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/ml; in plasma diluted 1:10) of IFN-alpha and/or IFN-omega are found in about 10% of patients with critical COVID-19 (coronavirus disease 2019) pneumonia but not in individuals with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-alpha and/or IFN-omega (100 pg/ml; in 1:10 dilutions of plasma) in 13.6% of 3595 patients with critical COVID-19, including 21% of 374 patients >80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1124 deceased patients (aged 20 days to 99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-beta. We also show, in a sample of 34,159 uninfected individuals from the general population, that auto-Abs neutralizing high concentrations of IFN-alpha and/or IFN-omega are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of individuals carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals 80 years. By contrast, auto-Abs neutralizing IFN-beta do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over 80s and total fatal COVID-19 cases.Peer reviewe

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

    Full text link
    Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    Get PDF
    SignificanceThere is growing evidence that preexisting autoantibodies neutralizing type I interferons (IFNs) are strong determinants of life-threatening COVID-19 pneumonia. It is important to estimate their quantitative impact on COVID-19 mortality upon SARS-CoV-2 infection, by age and sex, as both the prevalence of these autoantibodies and the risk of COVID-19 death increase with age and are higher in men. Using an unvaccinated sample of 1,261 deceased patients and 34,159 individuals from the general population, we found that autoantibodies against type I IFNs strongly increased the SARS-CoV-2 infection fatality rate at all ages, in both men and women. Autoantibodies against type I IFNs are strong and common predictors of life-threatening COVID-19. Testing for these autoantibodies should be considered in the general population

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ∼20% of deceased patients across age groups, and in ∼1% of individuals aged 4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals <70 y and ≥70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals <40 y old to 26.7% (20.3 to 35.2) for those ≥80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death.The Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute; The Rockefeller University; the St. Giles Foundation; the NIH (Grants R01AI088364 and R01AI163029); the National Center for Advancing Translational Sciences; NIH Clinical and Translational Science Awards program (Grant UL1 TR001866); a Fast Grant from Emergent Ventures; Mercatus Center at George Mason University; the Yale Center for Mendelian Genomics and the Genome Sequencing Program Coordinating Center funded by the National Human Genome Research Institute (Grants UM1HG006504 and U24HG008956); the Yale High Performance Computing Center (Grant S10OD018521); the Fisher Center for Alzheimer’s Research Foundation; the Meyer Foundation; the JPB Foundation; the French National Research Agency (ANR) under the “Investments for the Future” program (Grant ANR-10-IAHU-01); the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (Grant ANR-10-LABX-62-IBEID); the French Foundation for Medical Research (FRM) (Grant EQU201903007798); the French Agency for Research on AIDS and Viral hepatitis (ANRS) Nord-Sud (Grant ANRS-COV05); the ANR GENVIR (Grant ANR-20-CE93-003), AABIFNCOV (Grant ANR-20-CO11-0001), CNSVIRGEN (Grant ANR-19-CE15-0009-01), and GenMIS-C (Grant ANR-21-COVR-0039) projects; the Square Foundation; Grandir–Fonds de solidarité pour l’Enfance; the Fondation du Souffle; the SCOR Corporate Foundation for Science; The French Ministry of Higher Education, Research, and Innovation (Grant MESRI-COVID-19); Institut National de la Santé et de la Recherche Médicale (INSERM), REACTing-INSERM; and the University Paris Cité. P. Bastard was supported by the FRM (Award EA20170638020). P. Bastard., J.R., and T.L.V. were supported by the MD-PhD program of the Imagine Institute (with the support of Fondation Bettencourt Schueller). Work at the Neurometabolic Disease lab received funding from Centre for Biomedical Research on Rare Diseases (CIBERER) (Grant ACCI20-767) and the European Union's Horizon 2020 research and innovation program under grant agreement 824110 (EASI Genomics). Work in the Laboratory of Virology and Infectious Disease was supported by the NIH (Grants P01AI138398-S1, 2U19AI111825, and R01AI091707-10S1), a George Mason University Fast Grant, and the G. Harold and Leila Y. Mathers Charitable Foundation. The Infanta Leonor University Hospital supported the research of the Department of Internal Medicine and Allergology. The French COVID Cohort study group was sponsored by INSERM and supported by the REACTing consortium and by a grant from the French Ministry of Health (Grant PHRC 20-0424). The Cov-Contact Cohort was supported by the REACTing consortium, the French Ministry of Health, and the European Commission (Grant RECOVER WP 6). This work was also partly supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases and the National Institute of Dental and Craniofacial Research, NIH (Grants ZIA AI001270 to L.D.N. and 1ZIAAI001265 to H.C.S.). This program is supported by the Agence Nationale de la Recherche (Grant ANR-10-LABX-69-01). K.K.’s group was supported by the Estonian Research Council, through Grants PRG117 and PRG377. R.H. was supported by an Al Jalila Foundation Seed Grant (Grant AJF202019), Dubai, United Arab Emirates, and a COVID-19 research grant (Grant CoV19-0307) from the University of Sharjah, United Arab Emirates. S.G.T. is supported by Investigator and Program Grants awarded by the National Health and Medical Research Council of Australia and a University of New South Wales COVID Rapid Response Initiative Grant. L.I. reports funding from Regione Lombardia, Italy (project “Risposta immune in pazienti con COVID-19 e co-morbidità”). This research was partially supported by the Instituto de Salud Carlos III (Grant COV20/0968). J.R.H. reports funding from Biomedical Advanced Research and Development Authority (Grant HHSO10201600031C). S.O. reports funding from Research Program on Emerging and Re-emerging Infectious Diseases from Japan Agency for Medical Research and Development (Grant JP20fk0108531). G.G. was supported by the ANR Flash COVID-19 program and SARS-CoV-2 Program of the Faculty of Medicine from Sorbonne University iCOVID programs. The 3C Study was conducted under a partnership agreement between INSERM, Victor Segalen Bordeaux 2 University, and Sanofi-Aventis. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C Study was also supported by the Caisse Nationale d’Assurance Maladie des Travailleurs Salariés, Direction générale de la Santé, Mutuelle Générale de l’Education Nationale, Institut de la Longévité, Conseils Régionaux of Aquitaine and Bourgogne, Fondation de France, and Ministry of Research–INSERM Program “Cohortes et collections de données biologiques.” S. Debette was supported by the University of Bordeaux Initiative of Excellence. P.K.G. reports funding from the National Cancer Institute, NIH, under Contract 75N91019D00024, Task Order 75N91021F00001. J.W. is supported by a Research Foundation - Flanders (FWO) Fundamental Clinical Mandate (Grant 1833317N). Sample processing at IrsiCaixa was possible thanks to the crowdfunding initiative YoMeCorono. Work at Vall d’Hebron was also partly supported by research funding from Instituto de Salud Carlos III Grant PI17/00660 cofinanced by the European Regional Development Fund (ERDF/FEDER). C.R.-G. and colleagues from the Canarian Health System Sequencing Hub were supported by the Instituto de Salud Carlos III (Grants COV20_01333 and COV20_01334), the Spanish Ministry for Science and Innovation (RTC-2017-6471-1; AEI/FEDER, European Union), Fundación DISA (Grants OA18/017 and OA20/024), and Cabildo Insular de Tenerife (Grants CGIEU0000219140 and “Apuestas científicas del ITER para colaborar en la lucha contra la COVID-19”). T.H.M. was supported by grants from the Novo Nordisk Foundation (Grants NNF20OC0064890 and NNF21OC0067157). C.M.B. is supported by a Michael Smith Foundation for Health Research Health Professional-Investigator Award. P.Q.H. and L. Hammarström were funded by the European Union’s Horizon 2020 research and innovation program (Antibody Therapy Against Coronavirus consortium, Grant 101003650). Work at Y.-L.L.’s laboratory in the University of Hong Kong (HKU) was supported by the Society for the Relief of Disabled Children. MBBS/PhD study of D.L. in HKU was supported by the Croucher Foundation. J.L.F. was supported in part by the Evaluation-Orientation de la Coopération Scientifique (ECOS) Nord - Coopération Scientifique France-Colombie (ECOS-Nord/Columbian Administrative department of Science, Technology and Innovation [COLCIENCIAS]/Colombian Ministry of National Education [MEN]/Colombian Institute of Educational Credit and Technical Studies Abroad [ICETEX, Grant 806-2018] and Colciencias Contract 713-2016 [Code 111574455633]). A. Klocperk was, in part, supported by Grants NU20-05-00282 and NV18-05-00162 issued by the Czech Health Research Council and Ministry of Health, Czech Republic. L.P. was funded by Program Project COVID-19 OSR-UniSR and Ministero della Salute (Grant COVID-2020-12371617). I.M. is a Senior Clinical Investigator at the Research Foundation–Flanders and is supported by the CSL Behring Chair of Primary Immunodeficiencies (PID); by the Katholieke Universiteit Leuven C1 Grant C16/18/007; by a Flanders Institute for Biotechnology-Grand Challenges - PID grant; by the FWO Grants G0C8517N, G0B5120N, and G0E8420N; and by the Jeffrey Modell Foundation. I.M. has received funding under the European Union’s Horizon 2020 research and innovation program (Grant Agreement 948959). E.A. received funding from the Hellenic Foundation for Research and Innovation (Grant INTERFLU 1574). M. Vidigal received funding from the São Paulo Research Foundation (Grant 2020/09702-1) and JBS SA (Grant 69004). The NH-COVAIR study group consortium was supported by a grant from the Meath Foundation.Peer reviewe

    Virus herpes simplex de type 2 (développement de nouveaux outils d investigation des mécanismes moléculaires de la résistance aux antiviraux et de la diversité génétique)

    No full text
    Au cours de ce travail, la résistance génotypique du virus herpes simplex de type 2 (HSV-2) a été étudiée. Initialement, nous avons mis en évidence un faible polymorphisme naturel, sans conséquence sur la sensibilité aux antiviraux, de la thymidine kinase (TK, gène UL23) et du complexe ADN polymérase/facteur de processivité (gènes UL30 et UL42). Dans le but de démontrer l implication dans la résistance à l aciclovir (ACV) de nouvelles mutations identifiées dans la TK, nous avons mis au point une méthode d étude de l activité de phosphorylation de l ACV in vitro par des TK recombinantes. L objectif de ces travaux était de mettre au point une méthode générale de détection de la résistance des HSV aux antiviraux fondée uniquement sur l analyse génétique. Un test de résistance génotypique a mis en évidence une variabilité anormalement élevée du gène UL30 d un isolat clinique de HSV-2. Le criblage rétrospectif des souches cliniques par un système spécifique de PCR en temps réel, a permis d estimer la prévalence de ce nouveau variant de HSV-2 variant (HSV-2v) à 3%. Les patients infectés étaient tous originaires d Afrique sub-saharienne et fréquemment co-infectés par le HIV. Sur l arbre phylogénique construit à partir des séquences UL30, ces isolats de HSV-2v apparaissent distincts des isolats classiques de HSV-2 et proches de l alphaherpèsvirus du chimpanzé (ChHV). Afin de caractériser la variabilité de l ensemble du génome viral, nous avons mis au point une technique d étude utilisant les marqueurs génétiques de type microsatellites, mais des études complémentaires sont nécessaires pour répondre à la question de l origine du HSV-2v.In this work, the genetic variability of herpes simplex virus type 2 was studied in the context of resistance to antivirals. First, a weak natural polymorphism was reported in HSV-2 concerning the thymidine kinase (TK, UL23 gene) and the DNA polymerase/processivity factor complex (UL30/UL42 genes) with no consequence on the antiviral susceptibility of HSV-2 strains. Then, a novel nonradioactive method for the evaluation the TK phosphorylation activity in vitro was performed to clarify the impact of new mutations previously identified within HSV-2 TK. The aim of these works was to develop a general method for the detection of HSV resistance to antivirals drugs bases solely on genetic analysis. Over a genotypic resistance test, a new genetic variant of HSV-2 was reported with an unexpected high divergence within UL30. The retrospective screening of numerous HSV-2 clinical isolates using a specific real-time PCR assay designed within UL30 gene permitted the identification of additional HSV-2 variants (HSV-2v) leading to an overall prevalence of 2.2%. All patients were natives from West and Central Africa and were mainly co-infected with HIV. Phylogenetic analysis based on UL30 gene evidenced that HSV-2v isolates clustered in a genetic group distinct from the one of HSV-2 classical isolates close to the chimpanzee alphaherpesvirus ChHV. The molecular study over the whole genome was performed using microsatellite molecular markers. Nevertheless, these results raise the question of the origin of this new virus and further studies are warranted to assess its relationships to other simplexviruses.PARIS-BIUSJ-Biologie recherche (751052107) / SudocSudocFranceF

    Résistance des virus herpes simplex aux antiviraux

    No full text
    International audienceHerpes simplex virus (HSV) infections remain an important cause of morbidity among immunocompromised patients, such as transplant recipients and human immunodeficiency virus [HIV]-infected individuals. Only few antiviral drugs are available to treat HSV infections: (val)acyclovir, foscarnet, and cidofovir. Prophylactic and curative antiviral treatments administered during prolonged periods among patients with altered T-cell immunity may lead to the emergence of HSV resistance to antivirals, contributing to a challenging therapeutic management of viral infection. The persistence of herpetic lesions after 10 days of well-conducted antiviral therapy is suggestive of viral resistance. Resistance to antivirals can be detected using genotypic methods (identifications of antiviral resistance-associated mutations by sequencing genes encoding viral proteins involved in the mechanism of action of antivirals) or phenotypic methods (measure of antiviral drug concentration inhibiting 50% of viral replication in cell culture). The prevalence of HSV resistance to acyclovir is below 1% in immunocompetent individuals, except those with herpetic keratitis for whom prevalence can reach 7%, and varies from 3.5% to 11% in immunocompromised patients. Adverse effects and the absence of eradication of viral latent infection constitute other limits to the use of antiviral drugs. New antiviral compounds undergoing clinical trials and novel potential viral targets seem very promising to enlarge the panel of efficient compounds to treat HSV infections.Les infections par les virus herpes simplex (HSV) constituent une cause majeure de morbidité chez les patients immunodéprimés tels que les receveurs de greffe ou les individus infectés par le virus de l’immunodéficience humaine (HIV). Les molécules antivirales utilisées pour le traitement de ces infections sont actuellement peu nombreuses : (val)aciclovir, foscarnet et cidofovir. L’instauration de traitements antiviraux préventifs ou curatifs, souvent durant des périodes prolongées, chez des patients dont l’immunité cellulaire est altérée, peut conduire à l’émergence de résistance des HSV aux antiviraux, compliquant alors la prise en charge thérapeutique de l’infection virale. La persistance de lésions herpétiques après 10 jours de traitement antiviral bien conduit doit faire suspecter une résistance virologique. Il est possible de détecter cette résistance par des méthodes génotypiques (identification de mutations associées à la résistance aux antiviraux par séquençage des gènes codant les protéines virales directement impliquées dans le mécanisme d’action des antiviraux) ou par des méthodes phénotypiques (mesure de la concentration d’un antiviral inhibant 50 % de la multiplication virale en culture de cellules). La prévalence de la résistance des HSV à l’aciclovir est inférieure à 1 % chez les individus immunocompétents, hormis ceux souffrant de kératite herpétique pour qui elle est de l’ordre de 7 %, et elle varie de 2,5 % à 11 % chez les individus immunodéprimés. De plus, il existe d’autres limitations à l’utilisation de ces antiviraux, comme leurs effets indésirables ou l’impossibilité d’éradiquer les infections virales latentes. À ce jour, de nouveaux composés en cours d’essais cliniques et de nouvelles cibles virales potentielles semblent très prometteuses pour agrandir le panel de molécules efficaces pour traiter les infections dues aux HSV

    Prévalance de la résistance à l'oseltamivir dans les isolats grippaux A/H1N1 pendant l'hiver 2007-2008 en région Aquitaine

    No full text
    La vaccination est le moyen le plus efficace de lutte antigrippale mais les adamantanes et les inhibiteurs de neuraminidase (INAs) ont également prouvé leur efficacité. Jusqu'à présent, une faible résistance aux INAs était observée mais de récentes études révèlent une forte prévalence de virus A (H1N1) résistants à l'oseltamivir en Europe. En position 274 du gène de la neuraminidase N1, une tyrosine remplace une histidine et confère un haut niveau de résistance à l'oseltamivir. De janvier à avril 2008, 21 souches isolées de patients vus en consultation de ville et hospitalisés ont été analysées par séquençage. Une RT-PCR en temps réel (FRET) a été développée pour détecter la mutation H274Y. Celle-ci a été mise en évidence dans la séquence du gène N1 de 10 isolats (48 %). Nos résultats de PCR et de séquençage sont totalement concordants au phénotypage réalisé dans un laboratoire de référence, correspondent aux données de l'OMS et imposent un suivi régulier de la résistance aux INAs.TOULOUSE3-BU Santé-Centrale (315552105) / SudocSudocFranceF

    Genotypic Characterization of UL23 Thymidine Kinase and UL30 DNA Polymerase of Clinical Isolates of Herpes Simplex Virus: Natural Polymorphism and Mutations Associated with Resistance to Antivirals▿

    No full text
    The molecular mechanisms of herpes simplex virus (HSV) resistance to antiviral drugs interfering with viral DNA synthesis reported so far rely on the presence of mutations within UL23 (thymidine kinase [TK]) and UL30 (DNA polymerase) genes. The interpretation of genotypic antiviral resistance assay results requires the clear distinction between resistance mutations and natural interstrain sequence variations. The objectives of this work were to describe extensively the natural polymorphism of UL23 TK and UL30 DNA polymerase among HSV-1 and HSV-2 strains and the amino acid changes potentially associated with HSV resistance to antivirals. The sequence analysis of the full-length UL23 and UL30 genes was performed. Ninety-four drug-sensitive clinical isolates (43 HSV-1 and 51 HSV-2) and 3 laboratory strains (KOS, gHSV-2, and MS2) were studied for natural polymorphism, and 25 clinical isolates exhibiting phenotypic traits of resistance to antivirals were analyzed for drug resistance mutations. Our results showed that TK and DNA polymerase are highly conserved among HSV strains, with a weaker variability for HSV-2 strains. This study provided a precise map of the natural polymorphism of both viral enzymes among HSV-1 and HSV-2 isolates, with the identification of 15 and 51 polymorphisms never previously described for TK and DNA polymerase, respectively, which will facilitate the interpretation of genotypic antiviral-resistant testing. Moreover, the genotypic characterization of 25 drug-resistant HSV isolates revealed 8 new amino acid changes located in TK and potentially accounting for acyclovir (ACV) resistance
    corecore