204 research outputs found

    Magnetic nulls and super-radial expansion in the solar corona

    Get PDF
    Magnetic fields in the sun's outer atmosphere -- the corona -- control both solar-wind acceleration and the dynamics of solar eruptions. We present the first clear observational evidence of coronal magnetic nulls in off-limb linearly polarized observations of pseudostreamers, taken by the Coronal Multichannel Polarimeter (CoMP) telescope. These nulls represent regions where magnetic reconnection is likely to act as a catalyst for solar activity. CoMP linear-polarization observations also provide an independent, coronal proxy for magnetic expansion into the solar wind, a quantity often used to parameterize and predict the solar wind speed at Earth. We introduce a new method for explicitly calculating expansion factors from CoMP coronal linear-polarization observations, which does not require photospheric extrapolations. We conclude that linearly-polarized light is a powerful new diagnostic of critical coronal magnetic topologies and the expanding magnetic flux tubes that channel the solar wind

    The Role of Turtles as Coral Reef Macroherbivores

    Get PDF
    Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood

    High CO2 enhances the competitive strength of seaweeds over corals

    Get PDF
    Space competition between corals and seaweeds is an important ecological process underlying coral-reef dynamics. Processes promoting seaweed growth and survival, such as herbivore overfishing and eutrophication, can lead to local reef degradation. Here, we present the case that increasing concentrations of atmospheric CO2 may be an additional process driving a shift from corals to seaweeds on reefs. Coral (Acropora intermedia) mortality in contact with a common coral-reef seaweed (Lobophora papenfussii) increased two- to threefold between background CO2 (400 ppm) and highest level projected for late 21st century (1140 ppm). The strong interaction between CO2 and seaweeds on coral mortality was most likely attributable to a chemical competitive mechanism, as control corals with algal mimics showed no mortality. Our results suggest that coral (Acropora) reefs may become increasingly susceptible to seaweed proliferation under ocean acidification, and processes regulating algal abundance (e.g. herbivory) will play an increasingly important role in maintaining coral abundance

    Toxicity of Sediment-Associated Pesticides to Chironomus dilutus and Hyalella azteca

    Get PDF
    Two hundred sediment samples were collected and their toxicity evaluated to aquatic species in a previous study in the agriculturally dominated Central Valley of California, United States. Pyrethroid insecticides were the main contributors to the observed toxicity. However, mortality in approximately one third of the toxic samples could not be explained solely by the presence of pyrethroids in the matrices. Hundreds of pesticides are currently used in the Central Valley of California, but only a few dozen are analyzed in standard environmental monitoring. A significant amount of unexplained sediment toxicity may be due to pesticides that are in widespread use that but have not been routinely monitored in the environment, and even if some of them were, the concentrations harmful to aquatic organisms are unknown. In this study, toxicity thresholds for nine sediment-associated pesticides including abamectin, diazinon, dicofol, fenpropathrin, indoxacarb, methyl parathion, oxyfluorfen, propargite, and pyraclostrobin were established for two aquatic species, the midge Chironomus dilutus and the amphipod Hyalella azteca. For midges, the median lethal concentration (LC50) of the pesticides ranged from 0.18 to 964 μg/g organic carbon (OC), with abamectin being the most toxic and propargite being the least toxic pesticide. A sublethal growth endpoint using average individual ash-free dry mass was also measured for the midges. The no–observable effect concentration values for growth ranged from 0.10 to 633 μg/g OC for the nine pesticides. For the amphipods, fenpropathrin was the most toxic, with an LC50 of 1–2 μg/g OC. Abamectin, diazinon, and methyl parathion were all moderately toxic (LC50s 2.8–26 μg/g OC). Dicofol, indoxacarb, oxyfluorfen, propargite, and pyraclostrobin were all relatively nontoxic, with LC50s greater than the highest concentrations tested. The toxicity information collected in the present study will be helpful in decreasing the frequency of unexplained sediment toxicity in agricultural waterways

    Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems

    Get PDF
    2 figuras, 3 tablasWhile large herbivores can have strong impacts on terrestrial ecosystems, much less is known of their role in aquatic systems. We reviewed the literature to determine: (1) which large herbivores (>10 kg) have a (semi-)aquatic lifestyle and are important consumers of submerged vascular plants, (2) their impact on submerged plant abundance and species composition and (3) their ecosystem functions. We grouped herbivores according to diet, habitat selection and movement ecology: (1) Fully aquatic species, either resident or migratory (manatees, dugongs, turtles), (2) Semi-aquatic species that live both in water and on land, either resident or migratory (swans), (3) Resident semi-aquatic species that live in water and forage mainly on land (hippopotamuses, beavers, capybara), (4) Resident terrestrial species with relatively large home ranges that frequent aquatic habitats (cervids, water buffalo, lowland tapir). Fully aquatic species and swans have the strongest impact on submerged plant abundance and species composition. They may maintain grazing lawns. Because they sometimes target belowground parts, their activity can result in local collapse of plant beds. Semi-aquatic species and turtles serve as important aquatic-terrestrial linkages, by transporting nutrients across ecosystem boundaries. Hippopotamuses and beavers are important geomorphological engineers, capable of altering the land and hydrology at landscape scales. Migratory species and terrestrial species with large home ranges are potentially important dispersal vectors of plant propagules and nutrients. Clearly, large aquatic herbivores have strong impacts on associated species and can be critical ecosystem engineers of aquatic systems, with the ability to modify direct and indirect functional pathways in ecosystems. While global populations of large aquatic herbivores are declining, some show remarkable local recoveries with dramatic consequences for the systems they inhabit. A better understanding of these functional roles will help set priorities for the effective management of large aquatic herbivores along with the plant habitats they rely on.This research was funded by the Spanish Ministry of Science and Innovation (CTM2013-48027-C3-3-R), an Intramural Project from the Spanish National Research Council (CSIC, 201330E062) and the Pew Marine Fellowship.Peer reviewe

    Predicting Coral Species Richness: The Effect of Input Variables, Diversity and Scale

    Get PDF
    Coral reefs are facing a biodiversity crisis due to increasing human impacts, consequently, one third of reef-building corals have an elevated risk of extinction. Logistic challenges prevent broad-scale species-level monitoring of hard corals; hence it has become critical that effective proxy indicators of species richness are established. This study tests how accurately three potential proxy indicators (generic richness on belt transects, generic richness on point-intercept transects and percent live hard coral cover on point-intercept transects) predict coral species richness at three different locations and two analytical scales. Generic richness (measured on a belt transect) was found to be the most effective predictor variable, with significant positive linear relationships across locations and scales. Percent live hard coral cover consistently performed poorly as anindicator of coral species richness. This study advances the practical framework for optimizing coral reef monitoring programs and empirically demonstrates that generic richness offers an effective way to predict coral species richness with a moderate level of precision. While the accuracy of species richness estimates will decrease in communities dominated byspecies-rich genera (e.g. Acropora), generic richness provides a useful measure of phylogenetic diversity and incorporating this metric into monitoring programs will increase the likelihood that changes in coral species diversity can be detected
    corecore