21 research outputs found

    A Detailed Observational Analysis of V1324 Sco, the Most Gamma-Ray Luminous Classical Nova to Date

    Full text link
    It has recently been discovered that some, if not all, classical novae emit GeV gamma rays during outburst, but the mechanisms involved in the production of the gamma rays are still not well understood. We present here a comprehensive multi-wavelength dataset---from radio to X-rays---for the most gamma-ray luminous classical nova to-date, V1324 Sco. Using this dataset, we show that V1324 Sco is a canonical dusty Fe-II type nova, with a maximum ejecta velocity of 2600 km s1^{-1} and an ejecta mass of few ×105\times 10^{-5} M_{\odot}. There is also evidence for complex shock interactions, including a double-peaked radio light curve which shows high brightness temperatures at early times. To explore why V1324~Sco was so gamma-ray luminous, we present a model of the nova ejecta featuring strong internal shocks, and find that higher gamma-ray luminosities result from higher ejecta velocities and/or mass-loss rates. Comparison of V1324~Sco with other gamma-ray detected novae does not show clear signatures of either, and we conclude that a larger sample of similarly well-observed novae is needed to understand the origin and variation of gamma rays in novae.Comment: 26 pages, 13 figure

    Genome-wide association study of febrile seizures implicates fever response and neuronal excitability genes

    Get PDF
    Febrile seizures represent the most common type of pathological brain activity in young children and are influenced by genetic, environmental and developmental factors. In a minority of cases, febrile seizures precede later development of epilepsy. We conducted a genome-wide association study of febrile seizures in 7635 cases and 83 966 controls identifying and replicating seven new loci, all with P < 5 x 10(-10). Variants at two loci were functionally related to altered expression of the fever response genes PTGER3 and IL10, and four other loci harboured genes (BSN, ERC2, GABRG2, HERC1) influencing neuronal excitability by regulating neurotransmitter release and binding, vesicular transport or membrane trafficking at the synapse. Four previously reported loci (SCN1A, SCN2A, ANO3 and 12q21.33) were all confirmed. Collectively, the seven novel and four previously reported loci explained 2.8% of the variance in liability to febrile seizures, and the single nucleotide polymorphism heritability based on all common autosomal single nucleotide polymorphisms was 10.8%. GABRG2, SCN1A and SCN2A are well-established epilepsy genes and, overall, we found positive genetic correlations with epilepsies (r(g) = 0.39, P = 1.68 x 10(-4)). Further, we found that higher polygenic risk scores for febrile seizures were associated with epilepsy and with history of hospital admission for febrile seizures. Finally, we found that polygenic risk of febrile seizures was lower in febrile seizure patients with neuropsychiatric disease compared to febrile seizure patients in a general population sample. In conclusion, this largest genetic investigation of febrile seizures to date implicates central fever response genes as well as genes affecting neuronal excitability, including several known epilepsy genes. Further functional and genetic studies based on these findings will provide important insights into the complex pathophysiological processes of seizures with and without fever.Peer reviewe

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Migraine polygenic risk score associates with efficacy of migraine-specific drugs

    Get PDF
    Objective To assess whether the polygenic risk score (PRS) for migraine is associated with acute and/or prophylactic migraine treatment response. Methods We interviewed 2,219 unrelated patients at the Danish Headache Center using a semistructured interview to diagnose migraine and assess acute and prophylactic drug response. All patients were genotyped. A PRS was calculated with the linkage disequilibrium pred algorithm using summary statistics from the most recent migraine genome-wide association study comprising ∼375,000 cases and controls. The PRS was scaled to a unit corresponding to a twofold increase in migraine risk, using 929 unrelated Danish controls as reference. The association of the PRS with treatment response was assessed by logistic regression, and the predictive power of the model by area under the curve using a case-control design with treatment response as outcome. Results A twofold increase in migraine risk associates with positive response to migraine-specific acute treatment (odds ratio [OR] = 1.25 [95% confidence interval (CI) = 1.05–1.49]). The association between migraine risk and migraine-specific acute treatment was replicated in an independent cohort consisting of 5,616 triptan users with prescription history (OR = 3.20 [95% CI = 1.26–8.14]). No association was found for acute treatment with non–migraine-specific weak analgesics and prophylactic treatment response. Conclusions The migraine PRS can significantly identify subgroups of patients with a higher-than-average likelihood of a positive response to triptans, which provides a first step toward genetics-based precision medicine in migraine

    Editing a gateway for cell therapy across the blood-brain barrier

    Full text link
    Stem cell therapy has been shown to improve stroke outcomes in animal models and is currently advancing towards clinical practice. However, uncertainty remains regarding the optimal route for cell delivery to the injured brain. Local intracerebral injections are effective in precisely delivering cells into the stroke cavity but carry the risk of damaging adjacent healthy tissue. Systemic endovascular injections, meanwhile, are minimally invasive, but most injected cells do not cross central nervous system (CNS) barriers and become mechanically trapped in peripheral organs. Although the blood-brain barrier (BBB) and the blood-cerebro spinal fluid barrier (BCSFB) tightly limit the entrance of cells and molecules into the brain parenchyma, immune cells can cross these barriers especially under pathological conditions, such as stroke. Deciphering the cell surface signature and the molecular mechanisms underlying this pathophysiological process holds promise for improving the targeted delivery of systemic injected cells to the injured brain. In this review, we describe experimental approaches that have already been developed in which (a) cells are either engineered to express cell surface proteins mimicking infiltrating immune cells or (b) cell grafts are preconditioned with hypoxia or incubated with pharmacological agents or cytokines. Modified cell grafts can be complemented with strategies to temporarily increase the permeability of the blood-brain barrier. Although these approaches could significantly enhance homing of stem cells into the injured brain, cell entrapment in off-target organs remains a non-negligible risk. Recent developments in safety-switch systems, which enable the precise elimination of transplanted cells upon the administration of a drug, represent a promising strategy for selectively removing stem cells stuck in untargeted organs. In sum, the techniques described in this review hold great potential to substantially improve efficacy and safety of future cell therapies in stroke and may be relevant to other brain diseases

    Sol'Ex et l'imagerie monochromatique solaire

    No full text
    National audienceNous présentons dans cet article le projet Solar Explorer « Sol'Ex », un spectrohéliographe miniaturisé pour astronome amateur permettant de réaliser par balayage des images monochromatiques de l'atmosphère solaire, de qualité professionnelle. Nous montrons comment un tel instrument s'insère dans une collaboration « pro/am » fructueuse, permettant d'enrichir une base nationale de données solaires construite autour du spectrohéliographe centenaire de Meudon

    Sol’Ex et l’imagerie monochromatique solaire

    No full text
    International audienceAprès une brève présentation des observations solaires réalisées depuis très longtemps à l’observatoire de Meudon et de leur enjeu, cet article décrit un modèle de spectrohéliographe extrêmement compact, capable de compléter la vaste collection de données historiques par des images actuelles, de haute valeur scientifique, ayant la caractéristique d’être acquises par un large public

    ArasBeam: when amateurs contribute to Be star research

    No full text

    Editing a gateway for cell therapy across the blood-brain barrier

    No full text
    Stem cell therapy has been shown to improve stroke outcomes in animal models and is currently advancing towards clinical practice. However, uncertainty remains regarding the optimal route for cell delivery to the injured brain. Local intracerebral injections are effective in precisely delivering cells into the stroke cavity but carry the risk of damaging adjacent healthy tissue. Systemic endovascular injections, meanwhile, are minimally invasive, but most injected cells do not cross CNS barriers and become mechanically trapped in peripheral organs. Although the blood-brain barrier and the blood-CSF barrier tightly limit the entrance of cells and molecules into the brain parenchyma, immune cells can cross these barriers especially under pathological conditions, such as stroke. Deciphering the cell surface signature and the molecular mechanisms underlying this pathophysiological process holds promise for improving the targeted delivery of systemic injected cells to the injured brain. In this review, we describe experimental approaches that have already been developed in which (i) cells are either engineered to express cell surface proteins mimicking infiltrating immune cells; or (ii) cell grafts are preconditioned with hypoxia or incubated with pharmacological agents or cytokines. Modified cell grafts can be complemented with strategies to temporarily increase the permeability of the blood-brain barrier. Although these approaches could significantly enhance homing of stem cells into the injured brain, cell entrapment in off-target organs remains a non-negligible risk. Recent developments in safety-switch systems, which enable the precise elimination of transplanted cells on the administration of a drug, represent a promising strategy for selectively removing stem cells stuck in untargeted organs. In sum, the techniques described in this review hold great potential to substantially improve efficacy and safety of future cell therapies in stroke and may be relevant to other brain diseases.ISSN:0006-8950ISSN:1460-215
    corecore