116 research outputs found
FORTY FIVE YEARS OF ANTICOAGULANT RODENTICIDES ā PAST, PRESENT AND FUTURE TRENDS
The anticoagulant rodenticides were discovered in the 1940s and their advantages of efficacy and safety quickly resulted in their use dominating the practice of rodent control in temperate countries. However, the development of resistance to the early compounds within a decade stimulated research culminating in the invention of anew class of anticoagulant, the second generation compounds, active against resistant strains but also overall far more potent than those previously available. A novel baiting strategy, pulsed baiting, was developed to make full use of this valuable characteristic. Pulsed baiting has enabled the use of second generation anticoagulants in situations where early products were of limited value, particularly in tropical agriculture. The future of this highly-successful group of compounds is reviewed in relation to resistance and the difficulty and cost of developing further rodenticides
Rapid coupling of Surface Plasmon Resonance (SPR and SPRi) and ProteinChipā¢ based mass spectrometry for the identification of proteins in nucleoprotein interactions
We compared coupling approaches of SPR to LC-MS and ProteinChipā¢-based mass spectrometry (SELDIā¢) as a means of identifying proteins captured on DNA surfaces. The approach we outline has the potential to allow multiple, quantitative analysis of macromolecular interactions followed by rapid mass spectrometry identification of retained material
Characterisation of Peptide Microarrays for Studying Antibody-Antigen Binding Using Surface Plasmon Resonance Imagery
BACKGROUND: Non-specific binding to biosensor surfaces is a major obstacle to quantitative analysis of selective retention of analytes at immobilized target molecules. Although a range of chemical antifouling monolayers has been developed to address this problem, many macromolecular interactions still remain refractory to analysis due to the prevalent high degree of non-specific binding. We describe how we use the dynamic process of the formation of self assembling monolayers and optimise physical and chemical properties thus reducing considerably non-specific binding and allowing analysis of specific binding of analytes to immobilized target molecules. METHODOLOGY/PRINCIPAL FINDINGS: We illustrate this approach by the production of specific protein arrays for the analysis of interactions between the 65kDa isoform of human glutamate decarboxylase (GAD65) and a human monoclonal antibody. Our data illustrate that we have effectively eliminated non-specific interactions with the surface containing the immobilised GAD65 molecules. The findings have several implications. First, this approach obviates the dubious process of background subtraction and gives access to more accurate kinetic and equilibrium values that are no longer contaminated by multiphase non-specific binding. Second, an enhanced signal to noise ratio increases not only the sensitivity but also confidence in the use of SPR to generate kinetic constants that may then be inserted into van't Hoff type analyses to provide comparative DeltaG, DeltaS and DeltaH values, making this an efficient, rapid and competitive alternative to ITC measurements used in drug and macromolecular-interaction mechanistic studies. Third, the accuracy of the measurements allows the application of more intricate interaction models than simple Langmuir monophasic binding. CONCLUSIONS: The detection and measurement of antibody binding by the type 1 diabetes autoantigen GAD65 represents an example of an antibody-antigen interaction where good structural, mechanistic and immunological data are available. Using SPRi we were able to characterise the kinetics of the interaction in greater detail than ELISA/RIA methods. Furthermore, our data indicate that SPRi is well suited to a multiplexed immunoassay using GAD65 proteins, and may be applicable to other biomarkers
High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes
The global transcriptional regulator H-NS selectively silences bacterial genes associated with pathogenicity and responses to environmental insults. Although there is ample evidence that H-NS binds preferentially to DNA containing curved regions, we show here that a major basis for this selectivity is the presence of a conserved sequence motif in H-NS target transcriptons. We further show that there is a strong tendency for the H-NS binding sites to be clustered, both within operons and in genes contained in the pathogenicity-associated islands. In accordance with previously published findings, we show that these motifs occur in AT-rich regions of DNA. On the basis of these observations, we propose that H-NS silences extensive regions of the bacterial chromosome by binding first to nucleating high-affinity sites and then spreading along AT-rich DNA. This spreading would be reinforced by the frequent occurrence of the motif in such regions. Our findings suggest that such an organization enables the silencing of extensive regions of the genetic material, thereby providing a coherent framework that unifies studies on the H-NS protein and a concrete molecular basis for the genetic control of H-NS transcriptional silencing
The James Clerk Maxwell telescope Legacy Survey of the Gould Belt: a molecular line study of the Ophiuchus molecular cloud
CO, 13CO, and C18O J = 3-2 observations are presented of the Ophiuchus molecular cloud. The 13CO and C18O emission is dominated by the Oph A clump, and the Oph B1, B2, C, E, F, and J regions. The optically thin(ner) C18O line is used as a column density tracer, from which the gravitational binding energy is estimated to be 4.5 Ć 1039 J (2282 Mā km2 s-2). The turbulent kinetic energy is 6.3 Ć 1038 J (320 Mā km2 s-2), or seven times less than this, and therefore the Oph cloud as a whole is gravitationally bound. 30 protostars were searched for high-velocity gas, with 8 showing outflows, and 20 more having evidence of high-velocity gas along their lines of sight. The total outflow kinetic energy is 1.3 Ć 1038 J (67 Mā km2 s-2), corresponding to 21 per cent of the cloud's turbulent kinetic energy. Although turbulent injection by outflows is significant, but does not appear to be the dominant source of turbulence in the cloud. 105 dense molecular clumplets were identified, which had radii Ė0.01-0.05 pc, virial masses Ė0.1-12 Mā, luminosities Ė0.001-0.1 K km s-1 pc-2, and excitation temperatures Ė10-50 K. These are consistent with the standard Giant Molecular Cloud (GMC) based size-linewidth relationships, showing that the scaling laws extend down to size scales of hundredths of a parsec, and to subsolar-mass condensations. There is however no compelling evidence that the majority of clumplets are undergoing free-fall collapse, nor that they are pressure confined
CK2 phosphorylation of the PRH/Hex homeodomain functions as a reversible switch for DNA binding
The proline-rich homeodomain protein (PRH/Hex) regulates transcription by binding to specific DNA sequences and regulates mRNA transport by binding to translation initiation factor eIF4E. Protein kinase CK2 plays multiple roles in the regulation of gene expression and cell proliferation. Here, we show that PRH interacts with the Ī² subunit of CK2 inĀ vitro and in cells and that CK2 phosphorylates PRH. Phosphorylation of PRH by CK2 inhibits the DNA binding activity of this protein and dephosphorylation restores DNA binding indicating that this modification acts as a reversible switch. We show that phosphorylation of the homeodomain is sufficient to block DNA binding and we identify two amino acids within this the domain that are phosphorylated by CK2: S163 and S177. Site-directed mutagenesis demonstrates that mutation of either of these residues to glutamic acid partially mimics phosphorylation but is insufficient to completely block DNA binding whereas an S163E/S177E double mutation severely inhibits DNA binding. Significantly, the S163E and S177E mutations and the S163E/S177E double mutation all inhibit the ability of PRH to regulate transcription in cells. Since these amino acids are conserved between many homeodomain proteins, our results suggest that CK2 may regulate the activity of several homeodomain proteins in this manner
DNA melting by RNA polymerase at the T7A1 promoter precedes the rate-limiting step at 37Ā°C and results in the accumulation of an off-pathway intermediate
The formation of a transcriptionally active complex by RNA polymerase involves a series of short-lived structural intermediates where protein conformational changes are coupled to DNA wrapping and melting. We have used time-resolved KMnO4 and hydroxyl-radical X-ray footprinting to directly probe conformational signatures of these complexes at the T7A1 promoter. Here we demonstrate that DNA melting from m12 to m4 precedes the rate-limiting step in the pathway and takes place prior to the formation of full downstream contacts. In addition, on the wild-type promoter, we can detect the accumulation of a stable off-pathway intermediate that results from the absence of sequence-specific contacts with the melted non-consensus ā10 region. Finally, the comparison of the results obtained at 37Ā°C with those at 20Ā°C reveals significant differences in the structure of the intermediates resulting in a different pathway for the formation of a transcriptionally active complex
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
- ā¦