43 research outputs found

    Hydrogen Peroxide: Its Role in Plant Biology and Crosstalk with Signalling Networks

    Get PDF
    Hydrogen peroxide (H2O2) is steadily gaining more attention in the field of molecular biology research. It is a major REDOX (reduction-oxidation reaction) metabolite and at high concentrations induces oxidative damage to biomolecules, which can culminate in cell death. However, at concentrations in the low nanomolar range, H2O2 acts as a signalling molecule and in many aspects, resembles phytohormones. Though its signalling network in plants is much less well characterized than are those of its counterparts in yeast or mammals, accumulating evidence indicates that the role of H2O2-mediated signalling in plant cells is possibly even more indispensable. In this review, we summarize hydrogen peroxide metabolism in plants, the sources and sinks of this compound and its transport via peroxiporins. We outline H2O2 perception, its direct and indirect effects and known targets in the transcriptional machinery. We focus on the role of H2O2 in plant growth and development and discuss the crosstalk between it and phytohormones. In addition to a literature review, we performed a meta-analysis of available transcriptomics data which provided further evidence for crosstalk between H2O2 and light, nutrient signalling, temperature stress, drought stress and hormonal pathways.O

    Cytokinin at the Crossroads of Abiotic Stress Signalling Pathways

    Get PDF
    Cytokinin is a multifaceted plant hormone that plays major roles not only in diverse plant growth and development processes, but also stress responses. We summarize knowledge of the roles of its metabolism, transport, and signalling in responses to changes in levels of both macronutrients (nitrogen, phosphorus, potassium, sulphur) and micronutrients (boron, iron, silicon, selenium). We comment on cytokinin's effects on plants' xenobiotic resistance, and its interactions with light, temperature, drought, and salinity signals. Further, we have compiled a list of abiotic stress-related genes and demonstrate that their expression patterns overlap with those of cytokinin metabolism and signalling genes.O

    Integrated Proteomic and Metabolomic Profiling of Phytophthora cinnamomi Attack on Sweet Chestnut (Castanea sativa) Reveals Distinct Molecular Reprogramming Proximal to the Infection Site and Away from It

    Get PDF
    Phytophthora cinnamomi is one of the most invasive tree pathogens that devastates wild and cultivated forests. Due to its wide host range, knowledge of the infection process at the molecular level is lacking for most of its tree hosts. To expand the repertoire of studied Phytophthora-woody plant interactions and identify molecular mechanisms that can facilitate discovery of novel ways to control its spread and damaging effects, we focused on the interaction between P. cinnamomi and sweet chestnut (Castanea sativa), an economically important tree for the wood processing industry. By using a combination of proteomics, metabolomics, and targeted hormonal analysis, we mapped the effects of P. cinnamomi attack on stem tissues immediately bordering the infection site and away from it. P. cinnamomi led to a massive reprogramming of the chestnut proteome and accumulation of the stress-related hormones salicylic acid (SA) and jasmonic acid (JA), indicating that stem inoculation can be used as an easily accessible model system to identify novel molecular players in P. cinnamomi pathogenicity.O

    Multifaceted activity of cytokinin in leaf development shapes its size and structure in Arabidopsis

    Get PDF
    The phytohormone cytokinin has been shown to affect many aspects of plant development ranging from the regulation of the shoot apical meristem to leaf senescence. However, some studies have reported contradictory effects of cytokinin on leaf physiology. Therefore cytokinin treatments cause both chlorosis and increased greening and both lead to decrease or increase in cell size. To elucidate this multifaceted role of cytokinin in leaf development, we have employed a system of temporal controls over the cytokinin pool and investigated the consequences of modulated cytokinin levels in the third leaf of Arabidopsis. We show that, at the cell proliferation phase, cytokinin is needed to maintain cell proliferation by blocking the transition to cell expansion and the onset of photosynthesis. Transcriptome profiling revealed regulation by cytokinin of a gene suite previously shown to affect cell proliferation and expansion and thereby a molecular mechanism by which cytokinin modulates a molecular network underlying the cellular responses. During the cell expansion phase, cytokinin stimulates cell expansion and differentiation. Consequently, a cytokinin excess at the cell expansion phase results in an increased leaf and rosette size fueled by higher cell expansion rate, yielding higher shoot biomass. Proteome profiling revealed the stimulation of primary metabolism by cytokinin, in line with an increased sugar content that is expected to increase turgor pressure, representing the driving force of cell expansion. Therefore, the developmental timing of cytokinin content fluctuations, together with a tight control of primary metabolism, is a key factor mediating transitions from cell proliferation to cell expansion in leaves

    Early cytokinin response proteins and phosphoproteins of Arabidopsis thaliana identified by proteome and phosphoproteome profiling

    Get PDF
    Cytokinins are plant hormones involved in regulation of diverse developmental and physiological processes in plants whose molecular mechanisms of action are being intensely researched. However, most rapid responses to cytokinin signals at the proteomic and phosphoproteomic levels are unknown. Early cytokinin responses were investigated through proteome-wide expression profiling based on image and mass spectrometric analysis of two-dimensionally separated proteins and phosphoproteins. The effects of 15 min treatments of 7-day-old Arabidopsis thaliana seedlings with four main cytokinins representing hydroxyisopentenyl, isopentenyl, aromatic, and urea-derived type cytokinins were compared to help elucidate their common and specific function(s) in regulating plant development. In proteome and phosphoproteome maps, significant differences were reproducibly observed for 53 and 31 protein spots, respectively. In these spots, 96 proteins were identified by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS), providing a snapshot of early links in cytokinin-regulated signalling circuits and cellular processes, including light signalling and photosynthesis, nitrogen metabolism, the CLAVATA pathway, and protein and gene expression regulation, in accordance with previously described cytokinin functions. Furthermore, they indicate novel links between temperature and cytokinin signalling, and an involvement of calcium ions in cytokinin signalling. Most of the differentially regulated proteins and phosphoproteins are located in chloroplasts, suggesting an as yet uncharacterized direct signalling chain responsible for cytokinin action in chloroplasts. Finally, first insights into the degree of specificity of cytokinin receptors on phosphoproteomic effects were obtained from analyses of cytokinin action in a set of cytokinin receptor double mutants

    COP1 destabilizes DELLA proteins in Arabidopsis

    Get PDF
    DELLA transcriptional regulators are central components in the control of plant growth responses to the environment. This control is considered to be mediated by changes in the metabolism of the hormones gibberellins (GAs), which promote the degradation of DELLAs. However, here we show that warm temperature or shade reduced the stability of a GA-insensitive DELLA allele in Arabidopsis thaliana. Furthermore, the degradation of DELLA induced by the warmth preceded changes in GA levels and depended on the E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). COP1 enhanced the degradation of normal and GA-insensitive DELLA alleles when coexpressed in Nicotiana benthamiana. DELLA proteins physically interacted with COP1 in yeast, mammalian, and plant cells. This interaction was enhanced by the COP1 complex partner SUPRESSOR OF phyA-105 1 (SPA1). The level of ubiquitination of DELLA was enhanced by COP1 and COP1 ubiquitinated DELLA proteins in vitro. We propose that DELLAs are destabilized not only by the canonical GA-dependent pathway but also by COP1 and that this control is relevant for growth responses to shade and warm temperature.This work was supported by the Spanish Ministry of Economy, Industry and Competitiveness and Agencia Española de Investigación/Fondo Europeo para el Desarrollo Regional/Unión Europea (grants BIO2016-79133-P to D.A. and BIO2013-46539-R and BIO2016-80551-R to V.R.); the European Union SIGNAT-Research and Innovation Staff Exchange (Grant H2020-MSCA-RISE-2014-644435 to M.A.B., D.A., and J.J.C.); the Argentinian Agencia Nacional de Promoción Científica y Tecnológica (Grant Proyectos de Investigación Científica y Tecnológica-2016-1459 to J.J.C.); Universidad de Buenos Aires (grant 20020170100505BA to J.J.C.); the National Institute of General Medical Sciences of the National Institutes of Health (awards R01GM067837 and R01GM056006 to S.A.K.); the German Research Foundation (DFG) under Germany’s Excellence Strategy/Initiative (Cluster of Excellence on Plant Sciences – Excellence Cluster EXC-2048/1, Project ID 390686111 to M.D.Z.); the International Max Planck Research School of the Max Planck Society; the Universities of Düsseldorf and of Cologne to T.B.; Nordrhein Westfalen Bioeconomy Science Center-FocusLabs CombiCom to N.H. and M.D.Z.; and Ministry of Education, Youth and Sports of the Czech Republic (Project LQ1601 Central European Institute of Technology 2020 to B.B. and M.C.). N.B.-T., E.I., and M.G.-L. were supported by Ministerio de Economía y Competitividad-Formación de Personal Investigador Program fellowships

    Advances in purification and separation of posttranslationally modified proteins

    Get PDF

    Developmental consequences of IPT activation in germinating tobacco seedlings

    No full text
    Upon activation of IPT transcription in tobacco seedlings, dynamics of changes in cytokinin metabolism, and subsequent chain of developmental alterations leading to transition from an originally almost normal seedling to a completely distinct teratoma structure is describe

    Interaction of plasmid DNA with yeast protoplasts and a mechanism of genetic transformation

    Get PDF
    AbstractDNA of plasmid pBB 29 is bound to protoplasts of Saccharomyces cerevisiae by a time-dependent, energy-independent process requiring Ca2+. It is not degraded during binding but most of the bound DNA can be degraded by exogenously added DNase. Foreign DNA competes for the binding. Genetic transformation of protoplasts depends on the same conditions as does the binding of DNA but, in addition, it also requires conditions allowing fusion of the protoplasts. Transformation may consist of firm adsorption of plasmid DNA to the protoplast surface, mediated by Ca2+, and of internalization of the DNA entrapped between two aggregated protoplasts as a suit of their fusion
    corecore