212 research outputs found

    The plastisphere microbiome in alpine soils alters the microbial genetic potential for plastic degradation and biogeochemical cycling

    Full text link
    Plastic is exceedingly abundant in soils, but little is known about its ecological consequences for soil microbiome functioning. Here we report the impacts of polyethylene and biodegradable Ecovio and BI-OPL plastic films buried in alpine soils for 5 months on the genetic potential of the soil microbiome using shotgun metagenomics. The microbiome was more affected by Ecovio and BI-OPL than by polyethylene. Fungi, α- and β-Proteobacteria dominated on the biodegradable films. Ecovio and BI-OPL showed signs of degradation after the incubation, whereas polyethylene did not. Genes involved in cellular processes and signaling (intracellular trafficking, secretion, vesicular transport), as well as metabolism (carbohydrate, lipid and secondary metabolism), were enriched in the plastisphere. Several α/β-hydrolase gene families (cutinase_like, polyesterase-lipase-cutinase, carboxylesterase), which encode enzymes essential to plastic degradation, and carbohydrate-active genes involved in lignin and murein degradation increased on Ecovio and BI-OPL films. Enriched nitrogen fixation and organic N degradation and synthesis genes and decreased nitrification genes on Ecovio altered the biogeochemical cycling, leading to higher ammonium concentrations and depletion of nitrite and nitrate in the soil. Our results indicate that plastics affect the alpine soil microbiome and its functions and suggest that the plastisphere has an untapped microbial potential for plastic biodegradation. + Graphical Abstrac

    Transport and turbulence reduction with negative triangularity : Correlation ECE measurements in TCV

    Get PDF
    Turbulence and Transport Reduction with Negative Triangularity : Correlation ECE Measurements in TCV Due to turbulence, core energy transport in fusion devices such as tokamaks generally exceeds collisional transport by at least an order of magnitude. It is therefore crucial to understand the instabilities driving the turbulent state and to find ways to control them. Plasma shape is one of these fundamental tools. In low collisionality plasmas, such as in a reactor, changing the plasma shape from Dee-shape to inverse Dee-shape (from positive to negative triangularity δ) reduces the energy transport by a factor two: the heat flux necessary to sustain the same profiles and stored energy in a discharge with δ=-0.4 is only half of that at δ=+0.4. This is significant, since it opens the possibility of having Hmode-like confinement time within an L-mode edge; or at least with smaller ELMs. Recent correlation ECE measurements show that this reduction of transport at negative δ is reflected in a reduction by a factor of two of both 1) the amplitude of temperature fluctuations in the broadband frequency range 30-150 kHz, and 2) the fluctuation correlation length, measured at mid-radius (ρv~0.6). In addition, the fluctuations amplitude is reduced with increasing collisionality, consistent with theoretical estimates of the collisionality effect on Trapped Electron Modes (TEM). The correlation ECE results are compared to gyrokinetic code results: 1) global linear gyrokinetic simulations (LORB) have predicted shorter radial TEM wavelength λ⊥ for negative triangularity plasmas, consistent with the shorter radial turbulence correlation length λc observed. 2) At least close to the strongly shaped plasma boundary, local nonlinear gyrokinetic simulations with the GS2 code predict that the TEM induced transport decreases with decreasing triangularity and increasing collisionality, in fair agreement with the experimental observations. 3) Calculations are now extended to global nonlinear simulations (ORB5). This work was supported in part by the Swiss National Science Foundatio

    Wege in die Ernährungszukunft der Schweiz - Leitfaden zu den grössten Hebeln und politischen Pfaden für ein nachhaltiges Ernährungssystem

    Get PDF
    Aus wissenschaftlicher Sicht ist klar: Unser Ernährungssystem ist nicht nachhaltig. Um unsere Lebens- und Wirtschaftsgrundlagen zu erhalten, braucht es eine Neuausrichtung über die gesamte Wertschöpfungskette. Diese ist gleichzeitig ein Schlüssel zur Erreichung der Agenda 2030 für nachhaltige Entwicklung. SDSN Schweiz hat das wissenschaftliche Gremium Ernährungszukunft Schweiz initiiert, um einen Wegweiser zu entwickeln. Er soll es der Schweiz erlauben, Chancen rechtzeitig anzupacken und unkontrollierbare Kostenfolgen zu vermeiden. Das wissenschaftliche Gremium hat international wegweisende Pionierarbeit geleistet. In einem interdisziplinären wissenschaftlichen Prozess wurde zum ersten Mal für ein Land ein umfassender Handlungspfad zur Neuausrichtung des Ernährungssystems im Einklang mit den Zielen für nachhaltige Entwicklung ausgearbeitet. Die beteiligten Forschenden schaffen damit eine wichtige Grundlage für die weitere politische Diskussion in der Schweiz und international

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE)

    Get PDF
    The Apache Point Observatory Galactic Evolution Experiment (APOGEE), one of the programs in the Sloan Digital Sky Survey III (SDSS-III), has now completed its systematic, homogeneous spectroscopic survey sampling all major populations of the Milky Way. After a three-year observing campaign on the Sloan 2.5 m Telescope, APOGEE has collected a half million high-resolution (R ~ 22,500), high signal-to-noise ratio (>100), infrared (1.51–1.70 μm) spectra for 146,000 stars, with time series information via repeat visits to most of these stars. This paper describes the motivations for the survey and its overall design—hardware, field placement, target selection, operations—and gives an overview of these aspects as well as the data reduction, analysis, and products. An index is also given to the complement of technical papers that describe various critical survey components in detail. Finally, we discuss the achieved survey performance and illustrate the variety of potential uses of the data products by way of a number of science demonstrations, which span from time series analysis of stellar spectral variations and radial velocity variations from stellar companions, to spatial maps of kinematics, metallicity, and abundance patterns across the Galaxy and as a function of age, to new views of the interstellar medium, the chemistry of star clusters, and the discovery of rare stellar species. As part of SDSS-III Data Release 12 and later releases, all of the APOGEE data products are publicly available

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe

    Measurement of prompt open-charm production cross sections in proton-proton collisions at root s=13 TeV

    Get PDF
    The production cross sections for prompt open-charm mesons in proton-proton collisions at a center-of-mass energy of 13TeV are reported. The measurement is performed using a data sample collected by the CMS experiment corresponding to an integrated luminosity of 29 nb(-1). The differential production cross sections of the D*(+/-), D-+/-, and D-0 ((D) over bar (0)) mesons are presented in ranges of transverse momentum and pseudorapidity 4 < p(T) < 100 GeV and vertical bar eta vertical bar < 2.1, respectively. The results are compared to several theoretical calculations and to previous measurements.Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV

    Measurement of B-c(2S)(+) and B-c*(2S)(+) cross section ratios in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe
    corecore