40 research outputs found

    Impact of subtle change in branched amino acid on the assembly and properties of perylene bisimides hydrogels

    Get PDF
    We investigate how apparent slight changes to the chemical structure of amino acid-functionalised perylene bisimides (PBIs) affect the self-assembled aggregates formed and their resulting physical and optical properties. PBIs functionalised with L-valine (PBI-V), L-leucine (PBI-L) and L-isoleucine (PBI-I) are investigated due to their similarly branched structure and their assemblies in water were studied using UV-vis absorption spectroscopy, cyclic voltammetry (CV), small angle X-ray scattering (SAXS) and viscosity at different pHs. It was seen that each PBI behaved differently. Each of the PBIs were then used to prepare hydrogels, and their properties again assessed, with PBI-I forming different hydrogels than the other PBIs. By understanding how slight changes in chemical structure can affect bulk properties we become a step closer to designing gels with specific physical and electrical properties

    Incorporating connectivity into conservation planning for the optimal representation of multiple species and ecosystem services

    Get PDF
    Funding was provided by the Rainforest Trust foundation. Support was also provided by the Sabah Forest Department, Forest Research Centre, the South East Asia Rainforest Research Partnership, the U.N. Development Programme, the Universiti Malaysia Sabah (FRGS0414-STWN-1/2015), PACOS Trust, BC Initiative, the Natural Environment Research Council UK (grant NE/R009597/1), and the Universities of Aberdeen, Montana, and York. We are grateful to the numerous researchers that collected the data used in our analyses, as well as the local communities and government staff who manage forested areas across Sabah.Peer reviewedPostprin

    Landscape-scale benefits of protected areas for tropical biodiversity

    Get PDF
    We are indebted to numerous local communities, PA and government agency staff, research assistants, and other partners for supporting the field data collection. Research permissions were granted by appropriate forestry and conservation government departments in each country. Special thanks is given to the Sarawak State Government, Sarawak Forestry Corporation, Forest Department Sarawak, Sabah Biodiversity Centre, the Danum Valley Management Committee, the Forest Research Institute Malaysia (FRIM), the Smithsonian Institute and the Tropical Ecology Assessment and Monitoring (TEAM) network, Sarayudh Bunyavejchewin, and Ronglarp Sukmasuang. Support was provided by the United Nations Development Programme, NASA grants NNL15AA03C and 80NSSC21K0189, National Geographic Societyā€™s Committee for the Research and Exploration award #9384ā€“13, the Australian Research Council Discovery Early Career Researcher Award DECRA #DE210101440, the Universiti Malaysia Sarawak, the Ministry of Higher Education Malaysia, Nanyang Technological University Singapore, the Darwin Initiative, Liebniz-IZW, and the Universities of Aberdeen, British Columbia, Montana, and Queensland.Peer reviewedPostprin

    Can we save large carnivores without losing large carnivore science?

    Full text link

    CamTrapAsia: A dataset of tropical forest vertebrate communities from 239 camera trapping studies

    Get PDF
    Information on tropical Asian vertebrates has traditionally been sparse, particularly when it comes to cryptic species inhabiting the dense forests of the region. Vertebrate populations are declining globally due to landā€use change and hunting, the latter frequently referred as ā€œdefaunation.ā€ This is especially true in tropical Asia where there is extensive landā€use change and high human densities. Robust monitoring requires that large volumes of vertebrate population data be made available for use by the scientific and applied communities. Camera traps have emerged as an effective, nonā€invasive, widespread, and common approach to surveying vertebrates in their natural habitats. However, cameraā€derived datasets remain scattered across a wide array of sources, including published scientific literature, gray literature, and unpublished works, making it challenging for researchers to harness the full potential of cameras for ecology, conservation, and management. In response, we collated and standardized observations from 239 camera trap studies conducted in tropical Asia. There were 278,260 independent records of 371 distinct species, comprising 232 mammals, 132 birds, and seven reptiles. The total trapping effort accumulated in this data paper consisted of 876,606 trap nights, distributed among Indonesia, Singapore, Malaysia, Bhutan, Thailand, Myanmar, Cambodia, Laos, Vietnam, Nepal, and far eastern India. The relatively standardized deployment methods in the region provide a consistent, reliable, and rich count data set relative to other largeā€scale pressenceā€only data sets, such as the Global Biodiversity Information Facility (GBIF) or citizen science repositories (e.g., iNaturalist), and is thus most similar to eBird. To facilitate the use of these data, we also provide mammalian species trait information and 13 environmental covariates calculated at three spatial scales around the camera survey centroids (within 10ā€, 20ā€, and 30ā€km buffers). We will update the dataset to include broader coverage of temperate Asia and add newer surveys and covariates as they become available. This dataset unlocks immense opportunities for singleā€species ecological or conservation studies as well as applied ecology, community ecology, and macroecology investigations. The data are fully available to the public for utilization and research. Please cite this data paper when utilizing the data

    Bactacs: A chemical tool for targeted protein degradation within bacteria

    No full text
    Abstract not currently available
    corecore