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The United Nations recently agreed to major expansions of global protected areas 52 

(PAs) to slow biodiversity declines 1. But while reserves often reduce habitat loss, 53 

their efficacy at preserving animal diversity is unclear, as is their influence on 54 

biodiversity in surrounding unprotected areas 2-5. Unregulated hunting can empty 55 

PAs of larger animals 6, illegal tree felling can degrade habitat quality 7, and parks 56 

can simply displace disturbances such as logging and hunting to unprotected areas of 57 

the landscape (‘leakage’) 8. Alternatively, well-functioning PAs could enhance animal 58 

diversity within reserves as well as in nearby unprotected sites (‘spillover’) 9. Here 59 

we test if PAs across mega-diverse Southeast Asia contribute to vertebrate 60 

conservation inside and outside their boundaries. Reserves increased all facets of 61 

bird diversity. Large reserves also had substantially enhanced mammal diversity in 62 

the adjacent unprotected landscape. Rather than PAs generating leakage that 63 

deteriorated ecological conditions elsewhere, our results are consistent with PAs 64 

inducing spillover that benefits biodiversity in surrounding areas. These findings 65 

support the 2030 United Nations goals of achieving 30% PA coverage by 66 

demonstrating that protected areas are associated with higher vertebrate diversity 67 

both inside their boundaries and in the broader landscape.  68 
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 69 

The establishment of protected areas (PAs) such as national parks and nature reserves is a 70 

foundational strategy to slow and reverse the global loss of biodiversity 3,7 – one of 71 

humanity’s greatest challenges. The recent Conference of Parties to the Convention on 72 

Biological Diversity (CBD) in Montreal, Canada, committed nations to protecting 30% of 73 

their lands and seas by 2030 (“30 × 30 goal”) 1. But to justify this goal, we need to know 74 

that PAs are actually effective at enhancing a range of metrics of biodiversity. Indeed, the 75 

conservation outcomes of PAs are highly variable 3,7,10,11. Many lack the resources for 76 

effective management 6,12 and are considered “paper parks” (Fig. 1). While others may be 77 

successful at maintaining habitat cover 3,7,13,14 and even alleviating poverty of nearby 78 

communities 15, their efficacy at protecting vulnerable elements of biodiversity – such as 79 

wildlife – remains uncertain 2,3,5,16,17.  80 

 Prior studies have assessed the efficacy of PAs at enhancing a variety of 81 

conservation metrics, often with mixed results. For example, PAs in forested areas tend to 82 

experience lower habitat conversion pressures than matched unprotected sites 3, and have 83 

been reported to contain higher levels of biodiversity 2,16,18,19. But in much of the world, PAs 84 

were established in relatively remote areas 20 because these locations had low societal 85 

opportunity costs (i.e., agriculture, logging, and other commercial land uses would have 86 

been difficult there). Therefore, any differences in biodiversity levels observed in PAs 87 

16,18,19 or in landscapes with a high proportion of protected area 2 could simply be due to 88 

PAs having been established in inaccessible areas where forest disturbance and extractive 89 

pressures were low due to logistical constraints rather than due to the protection status 90 

itself. In other words, any effects of PAs on biodiversity are statistically confounded with 91 
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site accessibility and habitat conditions, both of which directly influence biodiversity and 92 

could also have affected the locations of PAs. Such confounding has extremely important 93 

implications for the UN 30 × 30 goal. If PAs have enhanced biodiversity simply because 94 

they tend to be located in remote areas with undisturbed habitat; it would mean that 95 

proposed expansions of PA networks would be unlikely to lead to the desired biodiversity 96 

outcomes. New parks are increasingly being designated in disturbed and degraded areas 17, 97 

because there are ever fewer tracts of undisturbed, unprotected habitat remaining in most 98 

parts of the world. In sum, then, in order to justify costly 21,22 expansions of the global PA 99 

estate, we need to ascertain whether protection status itself contributes to positive 100 

biodiversity outcomes; we can do this by accounting for (i.e., “de-confounding”) potentially 101 

biased PA placement, especially with regards to habitat quality and accessibility.  102 

Assessing the efficacy of PAs while accounting for their potentially biased placement 103 

can be done using Structural Causal Modeling 23,24 to remove the confounding effects of site 104 

accessibility and habitat quality, along with statistical matching based on propensity scores 105 

25 to ensure balanced covariate values between sampling sites within versus outside PAs. 106 

But such de-confounding has been hindered by a lack of high-resolution, regional-scale 107 

metrics of accessibility and forest structure. Thus, while many studies have used statistical 108 

matching based on environmental factors like elevation and topography 13,16, none have 109 

been able to explicitly account for forest structure and accessibility.  110 

 New data now allow us to measure habitat quality much more effectively than 111 

before. Habitat quality has often been measured with optical (passive) remote sensing 112 

products, for example, satellite imagery for monitoring changes in forest cover 26. But 113 

emerging research has highlighted the importance of three-dimensional (3D) habitat 114 
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structure (e.g., vertical complexity, leaf density profiles, or forest height) as a stronger and 115 

more nuanced determinant of animal occurrence, composition, and diversity than forest 116 

cover 27-29. While changes in forest cover can be detected precisely and with high spatial 117 

resolution 26, they may not be a suitable proxy for forest vertical structure 30,31 and may 118 

therefore say relatively little about the state of non-tree biodiversity 32. Measurements 119 

from lidar, an active remote sensing technology, offer great promise for monitoring 3D 120 

habitat structure and biodiversity 28,33. The recent NASA Global Ecosystem Dynamics 121 

Investigation (GEDI) lidar mission 34 provides pantropical 3D canopy structure information 122 

33,34, but these data have not yet been leveraged for large-scale biodiversity conservation 123 

assessments.  124 

 Recent modeling advances also allow us to measure site accessibility in realistic 125 

ways and with high resolution. For example, a simple measure of accessibility, the distance 126 

from any given location on the landscape to the nearest road or village, was shown to be a 127 

strong predictor of vertebrate abundance across the tropics 6. This has been expanded to 128 

incorporate differences in travel speed on different types of roads and through different 129 

off-road areas as a function of topography and land cover 35. Circuit theoretical movement 130 

models now allow the high-resolution mapping of accessibility as a function of the location 131 

and size of human population centers, the transport infrastructure networks connecting 132 

them, and movement speeds through different types of terrain 35,36. Such accessibility 133 

metrics are distinct from other metrics of anthropogenic influence such as the “Human 134 

Footprint” 37 (see Methods); for example, many areas without agriculture or infrastructure 135 

(i.e., that would have a low human footprint score) still have roads leading through them 136 

and thus are accessible to hunting, logging, and other extractive activities 38. (In our study, 137 
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accessibility is only very weakly correlated with Human Footprint – see Methods.) Indeed, 138 

such extraction is critical to consider in assessing PA effectiveness. Even if PAs protect 139 

against habitat loss 3, this might not translate into positive outcomes for wildlife. Vast 140 

regions of the world have structurally intact habitats but are nearly or completely devoid of 141 

large animals due to unsustainable hunting and trapping, referred to as defaunation or 142 

‘empty forests’ 39,40. PA assessments, and indeed biodiversity mapping in general, that are 143 

based solely on habitat – failing to account for accessibility to hunting and other extraction 144 

– can severely bias estimates of species occurrence 6, diversity 41, and even ecosystem 145 

function 42.  146 

Finally, while research (described above) has investigated the effects of PAs on 147 

biodiversity inside reserve boundaries, PA influence on biodiversity in the broader 148 

landscape remains unclear. On the one hand, reserve establishment could potentially 149 

support biodiversity in the surrounding landscapes. This could occur if the wildlife refugia 150 

create population sources, such that in-reserve individuals then disperse to adjacent 151 

unprotected areas (‘spillover’) 43. Such neighborhood effects could also be generated by 152 

outreach and enforcement activities in the vicinity of parks 44 reducing hunting and other 153 

extractive activities in nearby areas as well. But on the other hand, PAs often simply 154 

displace human disturbance from inside the reserve to nearby unprotected areas; indeed, 155 

PA establishment has been observed to increase deforestation and animal harvest rates 156 

outside the boundaries, a phenomenon termed ‘leakage’ 8,45. There have been few 157 

assessments of whether spillover or leakage tends to be the dominant process, so we still 158 

know little about how PAs, particularly in hyper-diverse tropical regions, affect animal 159 

diversity in the surrounding landscape.  160 



 

8 
 

Here we assess the efficacy of terrestrial PAs for conserving tropical mammal and 161 

bird diversity while de-confounding the effects of 3D forest structure and accessibility, and 162 

while evaluating spillover versus leakage into surrounding unprotected areas. Moreover, 163 

we assess how PAs contribute not just to species richness (SR) but to the functional and 164 

phylogenetic diversity of vertebrate communities 4,46 (Fig. 1). While many broad-scale 165 

biodiversity assessments rely on relatively crude measures of biodiversity such as species 166 

distributions 47 or the coverage of particular ecosystem types (e.g., forest 26), anthropogenic 167 

impacts often have cascading effects on both the functional and phylogenetic diversity of 168 

animals 46. Functional richness (FR) represents the variety of phenotypic traits likely to 169 

influence how species interact with others around them and with their environment 48. 170 

Though the relationship between functional traits and ecological function is not necessarily 171 

straightforward 49, FR can proxy the potential of an assemblage to contribute to important 172 

processes such as herbivory or seed dispersal 46. Phylogenetic diversity (PD) measures the 173 

cumulative evolutionary time embodied by a given assemblage 50. Our study is unique in 174 

assessing how PAs contribute to vertebrate conservation while accounting for forest 175 

structure and accessibility. Past work 3 used statistical matching to assess PA efficacy at 176 

preventing habitat conversion but not explicitly at protecting biodiversity. Other studies 177 

have assessed PA impacts on biodiversity 2,16,18,19 but without de-confounding or statistical 178 

matching, or with a population-level focus on a single taxon 5. Finally, no other study has 179 

assessed PA efficacy at protecting multiple facets of biodiversity and community structure 180 

(i.e., SR, FR, and PD) across multiple taxa, or has evaluated spillover versus leakage 181 

patterns for vertebrates outside terrestrial PAs. 182 
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We assessed these facets of vertebrate diversity across Southeast Asia (Fig. 2; 183 

Extended Data) – a region with some of the highest levels of biodiversity and the gravest 184 

conservation threats in the world. For mammals, we used 1,365 camera stations (biological 185 

replicates; 42.4% inside PAs) in 65 study areas to detect 112 taxa. For birds, we used 1,079 186 

eBird sampling locations (20.1% inside PAs) to detect 1,361 bird taxa (Fig. 2). Data were 187 

cleaned, filtered, and standardized to ensure comparability across sites with different 188 

survey efforts and data structures (see Methods). To de-confound the effects of site 189 

accessibility, we accounted for this factor using circuit theoretical models parameterized 190 

with human travel speeds across different terrains and the locations of population centers 191 

and transportation networks 6,35. Other covariates might mediate how accessibility 192 

(effectively a measure of potential hunting and other extraction pressures) would translate 193 

into actual hunting pressure, notably socioeconomic factors such as poverty. We partially 194 

accounted for this by including the Human Development Index (HDI; see Methods) and 195 

statistical interactions between accessibility and HDI in our models. But we also note that 196 

prior work in Malaysian Borneo demonstrated that accessibility alone (i.e., even without 197 

socioeconomic covariates) was a strong predictor of hunter detections on camera traps 35. 198 

Likewise, as noted, accessibility alone (as measured simply by the distance to the nearest 199 

road or town) strongly predicts vertebrate abundance across the tropics 6.  200 

We assessed 3D forest structure at the biodiversity sampling sites using 201 

geostatistical interpolation (kriging; see Methods) of GEDI forest structure data for the 202 

study region. We generated the following 3D structure metrics: (i) canopy height (rh95; m), 203 

(ii) plant area volume density between 0 and 5 meters (pavd; m2/m3), selected as a proxy 204 

for the density of the forest understory, (iii) cumulative plant area index (PAI) from the 205 
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ground to the top of canopy (m2/m2), (iv) structural complexity measured as foliage height 206 

diversity (Shannon's diversity index) of plant area index for 1 m height bins, and (v) 207 

proportional cover (0 = completely open, 1 = completely closed canopy). These tended to 208 

be highly correlated, so we did not include them all in our models. Univariate analyses 209 

showed that canopy height fit the diversity data the best, so we included this and 210 

understory density (which was only weakly correlated with canopy height; see Methods) in 211 

our models.  212 

We found that PAs significantly enhanced all facets of bird diversity. Bird sampling 213 

locations inside reserves tended to be less accessible (logistic regression of PA status 214 

against accessibility: β = -0.897, p << 0.001) and to have taller forest (PA status against 215 

forest height: β = 0.130, p << 0.001) than locations outside reserves, as is commonly 216 

observed due to the biased placement of PAs in remote areas 20. But using structural causal 217 

modeling 23,24 and propensity score matching 25 (see Methods) to de-confound these effects, 218 

we still detected strong influence of PA status on bird diversity. Estimated bird SR, FR, and 219 

PD were 19.2%, 7.4%, and 13.1% higher, respectively, inside than outside PAs (linear 220 

mixed-effects models [LMM]; all p < 0.01; Fig. 3; Extended Data Table 1), even after 221 

accounting for accessibility and forest structure. The enhanced bird SR that we detected in 222 

PAs is nearly double the 10.6% enhancement that Gray et al. 16 found in their global 223 

synthesis. Birds detected at PA sites included more large-bodied species (β = 12.492, p = 224 

0.001), predators of vertebrate ectotherms (β = 3.454, p = 0.004), species occupying mid-225 

high levels of the forest canopy (β = 4.505, p = 0.018), and fewer scavengers (β = -2.817, p = 226 

0.003), than those at unprotected sites.  227 
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The effects of PAs on mammals were also strong but quite different from those on 228 

birds. In contrast to the results for birds, no facet of mammal diversity was significantly 229 

different inside versus outside PAs (Extended Data Table 1). This was likely because, even 230 

outside of PAs, mammal diversity remained high in nearby unprotected areas, particularly 231 

adjacent to large PAs. This enhanced mammal diversity outside large PAs rendered non-232 

significant the pairwise differences in diversity between ‘protected’ and ‘non-protected’ 233 

sites. Estimated mammal SR, FR, and PD outside of PAs were 25.4%, 193.7%, and 23.8% 234 

higher, respectively, when the nearest PA was large (>500 km2) than when it was smaller 235 

(all p < 0.001; Fig. 4; Extended Data Table 1). Bird FR and PD outside of PAs were also 236 

significantly higher near large reserves (9.4% and 9.9% higher, respectively; Fig. 5) but 237 

these differences were considerably smaller than those of mammals (Extended Data Table 238 

1). For sampling locations outside PAs, distance to the nearest reserve was significantly 239 

associated with only one of the six diversity metrics, whereby mammal FR was higher in 240 

proximity to PAs than farther away (Extended Data Table 1).  241 

Taken together, our results show that the legal designation of PAs, and not just their 242 

biased placement, provides strong and significant benefits to Southeast Asian bird 243 

diversity. Our findings also show that large PAs are associated with higher diversity of both 244 

mammals and birds in surrounding unprotected areas, consistent with spillover rather 245 

than leakage being the dominant pattern at the landscape scale. The effects of PAs on birds 246 

inside parks and both taxa in the surrounding landscape are likely explained, at least in 247 

part, by PAs limiting hunting. We statistically controlled for accessibility in our models – 248 

this means that even at sites with equivalent potential hunting pressure inside versus 249 

outside PAs, sites at the former had lower realized hunting pressure. Enforcement, 250 
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community engagement, or other PA management activities 44 may be reducing hunting 251 

activities even in areas that are logistically accessible to hunters.  252 

The potential spillover that we detected may be driven by density dependent 253 

dispersal of animals out of source populations inside PAs 43, with bigger reserves being 254 

particularly effective by supporting larger source populations. Spillover is frequently 255 

reported from marine PAs, supporting fishing in nearby areas 43, but such evidence is far 256 

more limited in terrestrial environments. It is important to note that spillover in the marine 257 

PA context is measured as the movement of individuals and biomass, with few studies 258 

assessing changes in overall diversity. Indeed, our results may be conservative in that they 259 

focus on diversity rather than the abundance dynamics of particular species. Hunting and 260 

other threats will reduce abundance before they start to cause the outright extirpations (or 261 

declines to such low levels that detection is unlikely) that influence richness. The fact that 262 

we detected such strong changes in occurrence (measured cumulatively, across species, as 263 

changes in SR, FR, and PD) means that any influences of PAs inside (birds) and outside 264 

(mammals and birds) their boundaries are strong indeed. But as techniques improve for 265 

abundance estimation for multiple species at large spatial scales and high temporal 266 

resolutions 51, biodiversity monitoring in general and PA efficacy assessments in particular 267 

will become more powerful. We also note that an alternative mechanism for the patterns 268 

we detected is that large reserves may be more effective than smaller ones at attracting 269 

investment in conservation interventions such as outreach and enforcement 44. Better 270 

understanding the mechanisms of biodiversity spillover from tropical PAs may be very 271 

important for conservation and the achievement of the UN 30 × 30 goals.   272 
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We assessed diversity outside PAs as a function of Euclidean distance to the nearest 273 

reserve, though it is not entirely surprising that these variables were not significantly 274 

related. Straight-line distance does not account for how topography, forest quality, human 275 

infrastructure, or hunting might affect animal movement out of protected areas and across 276 

the landscape, and so is only a very crude metric of PA proximity. Future work could 277 

explore declines in diversity with decreasing PA proximity, a pattern predicted from the 278 

‘spillover’ hypothesis, using circuit theoretical movement models, as we did to estimate site 279 

accessibility to humans while accounting for ease-of-movement through different 280 

topographies and landscapes 35,36. 281 

Based on prior research 3,20, we were able to identify clear confounding variables for 282 

our assessment of PA efficacy and to de-confound the resulting analyses using structural 283 

causal modeling, propensity score-matching, and newly available data on the confounding 284 

variables. Based on this, we suggest that PA designation enhances bird diversity. For the 285 

assessment of PA effects outside their boundaries, potential confounding and missing 286 

variables were less clear, so we cannot claim that large PAs ‘cause’ (in a metaphysical 287 

sense) elevated diversity in the surrounding landscape. But even demonstrating a 288 

predictive, probabilistic relationship between PAs and diversity inside and outside their 289 

boundaries suggests that expanding the PA network in accordance with 30 × 30 goals 290 

should enhance bird and mammal diversity. This argument would be belied, however, if 291 

high-diversity areas had been protected first, with newer PAs relegated to areas with 292 

successively lower diversity. Such a pattern would imply that further expansions of the PA 293 

network would be likely to occur in even lower diversity areas and thus contribute little to 294 

conservation. But this scenario is not supported. Protected area ‘year of designation’ was 295 
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not significantly related to any facet of bird (p value range: 0.235 – 0.933) or mammal (p 296 

values: 0.180 – 0.871) diversity. Our predictions of increasing diversity with PA coverage 297 

may be inaccurate in terms of how the designation of any one particular new PA will affect 298 

diversity; there are just too many contingencies and idiosyncrasies for that level of 299 

prediction to be robust. But at broader scales, our results show strong positive effects of 300 

PAs on average diversity levels. This supports that if the region develops the numerous 301 

new PAs that will be required to meet 30 × 30 commitments, then cumulatively these new 302 

areas will contribute to the conservation of bird and mammal diversity. 303 

 304 

Our results can inform and improve implementation of the UN 30 × 30 agreement 305 

and the Convention on Biological Diversity’s post-2020 Global Biodiversity Framework 306 

with regards to biodiversity monitoring. The vast majority of species are not visible from 307 

space; their occurrence, abundance, and diversity must be measured on the ground and 308 

then, for spatial and temporal extrapolation, linked to remote sensing data via predictive 309 

modelling 52. The Essential Biodiversity Variables (EBVs) approach was developed by the 310 

UN 2030 Agenda for Sustainable Development goals 53 to facilitate monitoring biodiversity 311 

trends and evaluate management impact 31. EBVs are intended to integrate on-the-ground 312 

biodiversity information with remote sensing data 54,55. Our results advance the 313 

development, integration, and monitoring of EBVs related to species traits, community 314 

composition, and ecosystem structure rather than just distributions of a few target taxa. 315 

Furthermore, our results highlight the need to incorporate 3D forest structure and proxies 316 

for hunting pressure into spatial biodiversity modelling in order to explain trends in 317 

certain EBVs and formulate effective management responses. Accessibility, especially if 318 
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paired with socioeconomic and cultural mediating factors, can be a very useful proxy for 319 

current hunting pressure for certain taxa 35,36. The distribution of other species may be 320 

determined by past hunting pressure. Such historical influence is often overlooked, but 321 

needs to be incorporated into spatial models, particularly for “refugee species” 56; tigers 322 

(Panthera tigris) in Southeast Asia, for example, are currently relegated to remote, hilly 323 

areas because they have been hunted out of their preferred habitat, lowland plains and 324 

riparian areas. While regional and global maps are available for most conservation threats, 325 

robust regional maps of hunting pressure have only recently emerged 35,39. These maps 326 

present new opportunities for biodiversity monitoring and PA efficacy assessment and 327 

could be updated dynamically over time, with investments in new technology-based 328 

approaches to monitoring hunting (e.g., with acoustics or camera traps). We have made our 329 

potential hunting pressure map for Southeast Asia publicly available (See ‘Data 330 

availability’), and our circuit theory approach 35 could be applied to nearly any region.  331 

PAs have long been the cornerstone of global biodiversity conservation, but our 332 

results suggest that reserve designation alone is insufficient for conserving biodiversity. 333 

Our findings are consistent with management (rather than simple remoteness) enhancing 334 

vertebrate diversity inside and outside PAs. But other studies have demonstrated huge 335 

variance in management effectiveness 3,5,7,12,16,19, with many PAs being mere ‘paper parks’. 336 

Effective management of hunting is a key opportunity to improve PA effectiveness, as is 337 

designating larger PAs that may enhance the spillover of animals (or conservation 338 

measures) to surrounding landscapes. The designation of new, large protected areas could 339 

include traditional PAs such as national parks, but also the variety of “Other Effective area-340 

based Conservation Measures” that are being explored as de facto means of increasing 341 
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protected area coverage in accordance with national and international targets 57. We echo 342 

earlier suggestions that expansion of PAs must be accompanied by substantial investment 343 

in initiatives promoting hunting sustainability 58,59, such as capacity building for park staff 344 

and the creation of alternative livelihoods for hunters. Investment by way of forest-based 345 

carbon financing, with projects adhering to the Climate, Community, and Biodiversity 346 

Standards, provides explicit provisions for biodiversity protection and community 347 

livelihoods including active control of hunting and encroachment, with such standards 348 

assessed during regular audits 60. Such measures can help ensure that reserves in less 349 

developed countries, and in the myriad areas susceptible to unsustainable hunting, can 350 

achieve the same conservation outcomes as those in more developed and less hunted areas.  351 

 352 
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Fig. 1 | Protected area (PA) effectiveness depends on safeguarding multiple facets of 506 

biodiversity. (a) PAs such as national parks can reduce habitat loss and degradation 507 

(logging) and extractive behaviors such as hunting (shown in red circle), but there are a 508 

wide range of real-world outcomes based on management effectiveness. (b) PAs aim to 509 

safeguard multiple facets of biodiversity, including species richness (SR), functional 510 

richness (FR) and phylogenetic diversity (PD). PAs often focus on vertebrate conservation 511 

due to their threat-levels and value to humans, including for tourism. Our study focuses on 512 

Southeast Asian wildlife, with mammals shown here representing a variation of feeding 513 

guilds and sizes. The same approach repeated for birds. (c) Wildlife communities inside 514 

PAs and in the surrounding landscape may have distinctive levels and types of diversity.  515 

 516 

Fig. 2 | Site accessibility overlain with bird (triangle) and mammal (circle) sampling 517 

locations across Southeast Asia. Variation in the accessibility of locations (e.g., to 518 

hunters; yellow-red) is estimated from circuit theoretic movement models. Designated 519 

terrestrial protected areas within the study region are shown in green.  520 

 521 

Fig. 3 | All facets of bird diversity were higher inside than outside protected areas. 522 

Panels a – c show violin plots of calculated diversity across sites, including variance in 523 

many covariates, and the percent difference in diversity means; points and lines show 524 

means and s.d., respectively. Panels d – f show estimated diversity (and mean differences 525 

between protected and unprotected sites) from spatial mixed-effects regression (two-526 

tailed) on propensity score-matched data; points and lines show means and s.e.m., 527 

respectively. Adjustments were not made for multiple comparisons; n = 1072, 1074, and 528 
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1073 biologically independent sites for species richness (a, d), functional richness (b, e), 529 

and phylogenetic diversity (c, f), respectively.  530 

 531 

Fig. 4 | All facets of mammal diversity outside of protected areas (PAs) are higher 532 

near large (>500 km2) than small PAs. Panels a – c show violin plots of calculated 533 

diversity across sites, including variance in many covariates, and the percent difference in 534 

diversity means; points and lines show means and s.d., respectively. Panels d – f show 535 

estimated diversity (and mean differences between sites near large versus small PAs) from 536 

spatial mixed-effects regression (two-tailed) on propensity score-matched data; points and 537 

lines show means and standard errors, respectively. Adjustments were not made for 538 

multiple comparisons; n = 1362, 1362, and 1360 biologically independent sites for species 539 

richness (a, d), functional richness (b, e), and phylogenetic diversity (c, f), respectively.  540 

 541 

Fig. 5 | All facets of bird diversity outside of protected areas (PAs) are higher near 542 

large (>500 km2) than small PAs, but these differences are lower than with mammals 543 

(Fig. 4). Panels a – c show violin plots of calculated diversity across sites, including 544 

variance in many covariates, and the percent difference in diversity means; points and lines 545 

show means and s.d., respectively. Panels d – f show estimated diversity (and mean 546 

differences between sites near large versus small PAs) from spatial mixed-effects 547 

regression (two-tailed) on propensity score-matched data; points and lines show means 548 

and standard errors, respectively. Adjustments were not made for multiple comparisons; n 549 

= 1074, 1072, and 1073 biologically independent sites for species richness (a, d), functional 550 

richness (b, e), and phylogenetic diversity (c, f), respectively.  551 
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METHODS 553 

Species observations, trait data, and phylogeny construction 554 

We assembled camera trap data of mammals from across the region. These data came from 555 

different research projects spanning 65 distinct study areas within the region (Fig. 2; 556 

Extended Data Table 2). In all cases, cameras were un-baited, active 24 hours per day, and 557 

attached to trees at ~0.3 - 0.6 m (depending on topography, vegetation understory, and 558 

other factors mediating the camera viewshed), heights capable of obtaining pictures of 559 

animals of a wide variety of sizes. Cameras were spaced ~1 km apart in most study areas 560 

and ~2.5 km apart in Vietnam. Cameras were active for a median 88 days (SD = 60.5; range 561 

= 16 - 439). In 9.3% of the 178,169 total photographic records it was impossible to 562 

determine the exact species of Callosciurus, Herpestes [including Urva], Hystrix, Muntiacus, 563 

Tragulus, Tupaia, or “otter”; we assigned these cases the average functional trait values for 564 

each genus (for the FR calculation) and assigned the records to a widespread member of 565 

each genus (for the PD calculation). We also lumped unidentified murid rodents and 566 

squirrels, assigning them to Maxomys whiteheadi and Callosciurus prevostii, respectively, 567 

for FR and PD calculation. In total, we detected 112 taxa. For sites with multiple years of 568 

sampling, we chose the most recent year for analysis.  569 

For birds, we used community science records from the eBird database 61; these 570 

constitute species lists from surveys, with multiple surveys per location used to estimate 571 

diversity. We collected all records from ‘stationary’ or ‘travelling’ survey protocols from 572 

January 2015 through August 2021 for the study region (Fig. 2). We followed data cleaning 573 

recommendations 62-64 by filtering the data to only include surveys where (i) all species 574 

were recorded, (ii) the distance travelled during the observation (for ‘travelling’ protocol) 575 
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was ≤8.1 km, (iii) the sampling duration (for ‘stationary’ protocol) was ≥5 and ≤240 576 

minutes, (iv) there were no more than 10 observers, and (v) the observation started 577 

between 05:00 and 20:00 local time. Sampling locations had a median 23 samples (range = 578 

10 – 1,200; SD = 105.6). We removed records of domestic species and those with 579 

identifications that were ambiguous as to genus. This resulted in a final dataset of 580 

1,345,922 records of 1,361 taxa. Of these taxa, 1,262 were identified to species and the 581 

remaining 7.3% assigned to a widespread congener that occurred at the location.  582 

For the functional richness calculations, we used data on traits from Wilman et al. 65 583 

that could clearly be related to potential ecological functions. Specifically, for both taxa we 584 

used body size, forest stratum preference, and the proportion of the diet made up of 585 

invertebrates, vertebrate endotherms, vertebrate ectotherms, fish, scavenging, fruit, nectar, 586 

seeds, and other plant materials. Variables were standardized to mean = 0, variance = 1 587 

before functional richness analysis. For the bird genera and the mammal groups listed 588 

above that were lumped at the genus or group level, we used genus- or group-level average 589 

trait values.  590 

 For the phylogenetic diversity calculations, we constructed consensus phylogenies 591 

(including consensus branch lengths) of all detected bird and mammal species from 1000 592 

trees for each taxon from the VertLife database 66. Taxa identified only to genus level were 593 

added to the root nodes of their genera. The resulting consensus trees were ultrametric, 594 

rooted, and dichotomous. We standardized taxonomic nomenclature between the field 595 

data, traits data, and phylogenies.  596 

 597 

Variables 598 



 

29 
 

To measure site accessibility, we calculated the circuit-theory derived accessibility (log10 599 

transformed) of each sampling site to humans, based on multi-modal travel speeds (i.e., on 600 

foot and by land vehicles) and human population density from specified population centers 601 

across different terrains and transportation networks. This is an extension of the map of 602 

Deith and Brodie 35 for Malaysian Borneo to the whole study area (Fig. 2). Previous work 603 

has shown that this predicts detections of hunters on camera traps in Malaysian Borneo 604 

very well 35. While hunting can be assessed via acoustic monitoring in some systems 67, in 605 

much of Asia harvest is done using snares, blowpipes, or other silent means and so may be 606 

better detected with camera traps. This metric was very weakly correlated with the Human 607 

Footprint Index 37 (r = 0.379 and 0.129 for bird and mammal sampling locations, 608 

respectively).  609 

Site accessibility is a proxy for potential hunting pressure, but realized hunting 610 

pressure will also be mediated by socioeconomic factors. As a simple metric of 611 

socioeconomic level, we included the Human Development Index (HDI) 68 of each country 612 

both as a main effect and as a statistical interactor with site accessibility. In analyses on the 613 

full dataset, we included a binary variable indicating whether or not the site was in a 614 

protected area (PA) using the World Database on PAs 69. For analyses on the subset of sites 615 

inside PAs, we replaced the binary variable with the size of the PA (km2). For analyses on 616 

the subset of sites outside PAs, the binary variable was replaced with the distance (km) to 617 

the nearest PA and the size (km2) of that PA.  618 

To assess the role of forest structure, we used five variables (described in the main 619 

text) derived from the Global Ecosystem Dynamics Investigation (GEDI) 34 generated using 620 

kriging to interpolate the sample-based data to the exact locations of the biodiversity 621 
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sampling sites. We selected ecologically relevant metrics from the GEDI L2A (Elevation and 622 

Height Metrics) and L2B (Canopy Cover and Vertical Profile Metrics) products (version 2; 623 

from 2019-04-17 to 2022-04-12). After filtering based on quality and degrade flags, the 624 

average sampling density across the study region was 15 points km-2. We performed the 625 

spatial interpolation processes with the gstat package 70 in R 71. We first derived separate 626 

empirical variograms for each structural variable on each major landmass of the study 627 

region. We optimized the model parameters with grid searches and selected the best 628 

models based on weighted (with inverse square distance) least squares fit. To determine an 629 

estimate of each variable at the exact location of each species observation site, we 630 

performed local kriging with a neighborhood of the 5000 closest valid GEDI samples. To 631 

map each variable at each pixel across the study region, we performed local kriging at the 632 

pixel locations with a neighborhood of the 500 closest GEDI samples 72. Rasters of the 633 

interpolated, GEDI-derived forest structure metrics are available (see ‘Data availability’).  634 

We excluded sampling locations that had undergone recent (2015-2019) forest loss, 635 

from Hansen et al.’s 26 global forest cover data. Field sampling (2015-2021) at some of our 636 

sites may have occurred prior to when GEDI data were collected (2018 – 2021). Excluding 637 

recently deforested sites removed the possibility of the field data having come from sites 638 

that were forested when field surveyed but then logged prior to the GEDI overpass. All 639 

continuous variables were standardized to mean = 0 and variance = 1 before the linear 640 

mixed-effects modelling described below. 641 

 642 

Diversity estimation 643 
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For both birds and mammals, the sampling intensity varied across locations and species 644 

were detected imperfectly. We accounted for this by using rarefaction-extrapolation 645 

techniques, using the iNEXT package 73 in R, to determine the estimated diversity for a 646 

standardized sampling intensity ‘endpoint’. For mammals, we used a minimum sampling 647 

intensity of 15 days, following Kays et al. 74, who suggested a minimum of two weeks 648 

sampling for camera trap studies, after which time the number of detected species rapidly 649 

plateaus. We set the sampling endpoint at three times this number, as diversity 650 

extrapolation is not considered reliable beyond triple the reference sample size 75,76. Thus, 651 

our mammal diversity estimates should be viewed as the SR, FR, or PD at a given site as 652 

detected within a 45-day sampling window. For birds, we set the minimum number of 653 

samples at a given location equal to 10, which balanced the need for sufficient sampling to 654 

ensure robust diversity estimation with the need to avoid throwing away excessive data 655 

(i.e., increasing the minimum number of samples to 15 would have necessitated throwing 656 

away 28% of sampling locations, which could have biased results by increasing Type II 657 

error). Again, our sampling endpoint was set to three times the minimum sample size, so 658 

our bird diversity estimates should be viewed as the SR, FR, or PD at a given site as 659 

detected within a 30-day sampling window. 660 

For SR, we generated a species × sample matrix populated by incidence data. We 661 

calculated the increase in Faith’s phylogenetic diversity (PD) metric 50 across successive 5-662 

day sample intervals at each site using the picante 77 package in R and then used the 663 

asymptote of the curve as the estimated PD for that site. We calculated Villéger et al.’s 664 

functional richness (FR) metric 78 using the FD 44 package in R; FR values are not 665 

necessarily monotonically related to sampling intensity or species diversity, so we used the 666 
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maximum FR value at each site rather than an asymptotic approximation. Diversity 667 

estimates are available 79 (see ‘Data availability’).  668 

The field sampling was reasonably complete, as evidenced by the correlation 669 

(Pearson’s r = 0.91 and 0.79 for birds and mammals, respectively) and high 670 

correspondence (Extended Data Fig. 1) between the number of species detected at 671 

sampling locations and the number estimated from rarefaction-extrapolation. The median 672 

percent difference between observed and estimated species richness across sampling 673 

locations was 23.5%.  674 

 675 

Structural causal modelling 676 

We used Structural Causal Modeling (SCM) to assess PA efficacy while de-confounding the 677 

effects of site accessibility and forest structure. SCM also allowed us to produce a set of 678 

predictor variables for each analysis that would result in unbiased coefficient estimation – 679 

while many variables could potentially affect diversity, adjusting for all of them in 680 

analytical models can bias results by introducing, rather than minimizing, conditional 681 

associations 80. We constructed a directed acyclic graph (Extended Data Fig. 2) showing 682 

potential causal pathways among variables and used DAGGITY 81 to identify the sufficient 683 

adjustment sets (i.e., suites of covariates) necessary to include in the models in order to 684 

generate unbiased estimates of the effects of exposure variables on outcome variables. We 685 

began with a nearest-neighbor matching with logit link function, but this yielded somewhat 686 

poor covariate balances. We then used full matching on the propensity score estimated 687 

with a probit link function; this yielded much better balances (shown in Extended Data 688 

Table 3). 689 
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 690 

Linear mixed effects modelling 691 

We used the variables identified in the SCM in linear mixed-effects models to assess PA 692 

efficacy and determine the environmental factors related to bird and mammal diversity. 693 

We accounted for spatial autocorrelation in two ways. First, we use mixed-effects models 694 

with an exponential correlation structure based on the covariance in pairwise distances 695 

among sites, following Hakkenberg & Goetz 82. Second, we also included (for mammals) 696 

study area nested within country as random effects because the data were highly spatially 697 

clustered and to account for the potential for other (un-modelled) national-level 698 

anthropogenic factors to affect diversity. For birds, we used country alone as a random 699 

effect because the sampling locations were not clustered into discrete study areas. The SCM 700 

identified ‘forest structure’ as a critical variable to include in the models in order to de-701 

confound our PA efficacy analysis. We determined which GEDI variable to use to represent 702 

forest structure based on univariate analyses, as we could not include all of them in the 703 

same model because they were highly correlated. Canopy height fit the diversity data better 704 

(i.e., had lower AIC values) than the other GEDI variables and we included that variable, 705 

along with understory vegetation density (pavd, which was not strongly correlated with 706 

canopy height: r = -0.01) in the linear models. All variables included in the same model had 707 

correlation coefficients r < 0.6. We checked regression diagnostics to assess linear 708 

relationships between residuals and fitted values and normality of the residuals. In a few 709 

cases (see Extended Data Table 1) we removed some observations to improve normality of 710 

the residuals. We assessed the leverage of each observation using the hatvalues function in 711 

R. In all models, the highest-leverage observations were well below 2 (maximum values for 712 
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the different analyses were 0.21 – 0.40 and 0.86 – 0.90 for birds and mammals, 713 

respectively).  714 

To assess PA efficacy, we ran linear mixed-effects models in a statistically matched 715 

framework. Matching was conducted using nearest-neighbor propensity score matching 716 

without replacement, estimating the propensity score with logistic regression of the 717 

treatment (PA status) on the covariates to achieve the best possible balance of covariate 718 

values (except protected status) between sites inside versus outside PAs 3,25. We matched 719 

the datasets based on canopy height, site accessibility, HDI, and location (UTM easting and 720 

northing) using the MatchIt 83 package in R. We then ran linear mixed-effects models on the 721 

matched datasets, ensuring that comparisons between sites inside versus outside PAs were 722 

on datasets that were otherwise as similar as possible in forest structure, accessibility, and 723 

human influence, while also being as geographically matched as possible. We ran these 724 

models in the nlme 84 package in R. We tested whether high-diversity areas had been 725 

protected first, with newer PAs relegated to areas with successively lower diversity. We 726 

ran mixed-effects linear regressions using the same predictor variables as above but also 727 

including PA ‘year of designation’.  728 

 To assess support for spillover versus leakage patterns, we modeled diversity as a 729 

function of the predictor variables described above on the subset of sites outside PAs (N = 730 

621 and 774 for birds and mammals, respectively). In these models, we replaced the PA 731 

status binary variable with either the size of the nearest PA or (in separate models), the 732 

distance to the nearest PA. These data were analyzed propensity score-based statistical 733 

matching to achieve covariate balances, using full matching and probit link functions, as 734 

described above. Covariate balances are shown in Extended Data Table 3 and model results 735 
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(standardized beta coefficients and p values) in Extended Data Table 1. The point of 736 

propensity score matching is to achieve balanced sets of covariate values between two sets 737 

of data – thus the response variables in such analyses are binary. Despite broad consensus 738 

that large protected areas are necessary for conserving certain vulnerable elements of 739 

biodiversity 85,86, and evidence that they provide a higher per-unit return-on-investment 740 

than smaller PAs 87, surprisingly little research allows us to determine size thresholds in PA 741 

performance – in other words, to ascertain ‘how large are large PAs?”. A prior assessment 742 

of PA effectiveness at conserving natural habitat in other tropical regions suggests that 743 

strong habitat disturbance can occur ~12 km into the boundary of PAs 88. Assuming 744 

circular reserves, this would translate to a minimum of ~500 km2 for a PA to maintain a 745 

core of little-disturbed habitat. Therefore, we used 500 km2 as a threshold distinguishing 746 

‘large’ from ‘small’ PAs in our analysis. After establishing that diversity was higher near 747 

large than small PAs based on this threshold, we ran sensitivity analyses where we re-ran 748 

the models but with different PA size thresholds. Diversity was generally enhanced in large 749 

relative to small PAs at alternative thresholds of 400, 600, and 1000 km2, particularly for 750 

mammals (Extended Data Table 4).  751 
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EXTENDED DATA FIGURE LEGENDS 869 

FIGURE 1. Estimates of sampling completeness – the correspondence between the number 870 

of species detected at sampling locations and the number estimated from rarefaction-871 

extrapolation (see Methods) for birds (panel a; Pearson’s r = 0.91) and mammals (b; r = 872 

0.79), with 1 : 1 lines shown. 873 
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 874 

FIGURE 2. Directed acyclic graph of bird or mammal diversity in relation to exposure 875 

variables and covariates. The structure of the graph shows how the influence of protected 876 

areas on diversity are de-confounded from the influence of forest structure and site 877 

accessibility. 878 

 879 

EXTENDED DATA TABLE LEGENDS 880 

TABLE 1. Results from mixed-effects linear regression (two-tailed) for species richness 881 

(SR), functional richness (FR), and phylogenetic diversity (PD). Values are the model β 882 

coefficients (SE; p-value) for the exposure variables in each analysis (‘PA’, ‘PA size’, and 883 

‘Distance to PA’) and associated covariates, with conditional R2 shown. Adjustments were 884 

not made for multiple comparisons. PC = Principal Component axis; HDI = Human 885 

Development Index (a national-level metric); PA = Protected Area; other variables are 886 

explained in the main text. All continuous covariates were standardized prior to analysis. 887 

Exposure variable coefficients with p-values <0.05 are in bold; covariate coefficients and p-888 

values should not be interpreted in propensity score-matched analyses. 889 

 890 

TABLE 2. Locations of the mammal study areas showing mean (SD) latitude, longitude, 891 

elevation, topographic position index (TPI), and site accessibility, along with the 892 

percentage of camera stations inside protected areas (PAs).  893 

 894 

TABLE 3. Propensity score statistical matching results. UTM = Universal Transverse 895 

Mercator; TPI = Topographic Position Index; HDI = Human Development Index (a national-896 
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level metric); PC = Principle Component axis; PA = Protected Area; other variables are 897 

explained in the main text.  898 

 899 

TABLE 4. Results from mixed-effects linear regression (two-tailed) for species richness 900 

(SR), functional richness (FR), and phylogenetic diversity (PD) of birds and mammals as a 901 

function of protected area size (binary) across different size thresholds. Adjustments were 902 

not made for multiple comparisons. Values are the model β coefficients (p-value).  903 
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