311 research outputs found

    Physical science and the home

    Full text link
    Thesis (Ed. M.)--Boston University, 194

    Sampling Bias Exaggerates a Textbook Example of a Trophic Cascade

    Get PDF
    Understanding trophic cascades in terrestrial wildlife communities is a major challenge because these systems are difficult to sample properly. We show how a tradition of non-random sampling has confounded this understanding in a textbook system (Yellowstone National Park) where carnivore [Canis lupus (wolf)] recovery is associated with a trophic cascade involving changes in herbivore [Cervus canadensis (elk)] behaviour and density that promote plant regeneration. Long-term data indicate a practice of sampling only the tallest young plants overestimated regeneration of overstory aspen (Populus tremuloides) by a factor of 4–7 compared to random sampling because it favoured plants taller than the preferred browsing height of elk and overlooked non-regenerating aspen stands. Random sampling described a trophic cascade, but it was weaker than the one that non-random sampling described. Our findings highlight the critical importance of basic sampling principles (e.g. randomisation) for achieving an accurate understanding of trophic cascades in terrestrial wildlife systems

    Sexually dimorphic aggression indicates male gray wolves specialize in pack defense against conspecific groups

    Get PDF
    Aggression directed at conspecific groups is common among gregarious, territorial species, and for some species such as gray wolves (Canis lupus) intraspecific strife is the leading cause of natural mortality. Each individual in a group likely has different measures of the costs and benefits associated with a group task, such as an aggressive attack on another group, which can alter motivation and behavior. We observed 292 inter-pack aggressive interactions in Yellowstone National Park between 1 April 1995 and 1 April 2011 (\u3e5300 days of observation) in order to determine the role of both sexes, and the influence of pack, age, and other traits on aggression. We recorded the behaviors and characteristics of all individuals present during the interactions (n = 534 individuals) and which individuals participated in each step (i.e. chase, attack, kill, flight) of the interaction. Overall, all wolves were more likely to chase rivals if they outnumbered their opponent, suggesting packs accurately assess their opponent’s size during encounters and individuals adjust their behavior based on relative pack size. Males were more likely than females to chase rival packs and gray-colored wolves were more aggressive than black-colored wolves. Male wolves and gray-colored wolves also recorded higher cortisol levels than females and black-colored wolves, indicating hormonal support for more intense aggressive behavior. Further, we found a positive correlation between male age and probability of chasing, while age-specific participation for females remained constant. Chasing behavior was influenced by the sex of lone intruders, with males more likely to chase male intruders. This difference in behavior suggests male and female wolves may have different strategies and motivations during inter-pack aggressive interactions related to gray wolf mating systems. A division of labor between pack members concerning resource and territory defense suggests selection for specific traits related to aggression is an adaptive response to intense competition between groups of conspecifics

    Group composition effects on aggressive interpack interactions of gray wolves in Yellowstone National Park

    Get PDF
    Knowledge of characteristics that promote group success during intraspecific encounters is key to understanding the adaptive advantages of sociality for many group-living species. In addition, some individuals in a group may be more likely than others to influence intergroup conflicts, a relatively neglected idea in research on social animals. Here we use observations of aggressive interactions between wolf (Canis lupus) packs over an extended period and use pack characteristics to determine which groups had an advantage over their opponents. During 16 years of observation in Yellowstone National Park from 1995 to 2010, we documented 121 interpack aggressive interactions. We recorded pack sizes, compositions, and spatial orientation related to residency to determine their effects on the outcomes of interactions between packs. Relative pack size (RPS) improved the odds of a pack displacing its opponent. However, pack composition moderated the effect of RPS as packs with relatively more old members (\u3e6.0 years old) or adult males had higher odds of winning despite a numerical disadvantage. The location of the interaction with respect to pack territories had no effect on the outcome of interpack interactions. Although the importance of RPS in successful territorial defense suggests the evolution and maintenance of group living may be at least partly due to larger packs’ success during interpack interactions, group composition is also an important factor, highlighting that some individuals are more valuable than others during interpack conflicts

    Territoriality and Inter-Pack Aggression in Gray Wolves: Shaping a Social Carnivore\u27s Life History \u3ci\u3eRudyard Kipling\u27s Law of the Jungle Meets Yellowstone\u27s Law of the Mountains\u3c/i\u3e

    Get PDF
    When Rudyard Kipling wrote The Jungle Book in 1894 and included the famous line For the strength of the Wolf is the Pack, and the strength of the Pack is the Wolf, he would have had no idea that over a century later, scientific research would back up his poetic phrase. Recent studies in Yellowstone have found that both the individual wolf and the collective pack rely on each other and play important roles in territoriality. At a time when most fairy tales and fables were portraying wolves as demonic killers or, at best, slapstick gluttons, Kipling seemed to have a respect or even reverence for the wolf. Wolves in The Jungle Book raise and mentor the main character Mowgli, with the pack\u27s leader eventually dying to save the man-cub from a pack of wolves. Kipling may have extended intra-pack benevolence to a human boy for literary sake, but he was clearly enthralled with how pack members treat each other. As wolf packs are almost always family units, most commonly comprised of a breeding pair and their offspring from several years, amiable behavior within the pack is unsurprising. By contrast, wolf packs are fiercely intolerant of their neighbors, their rivals. And this competition is proving to be an important facet in the life of a wolf and its pack

    Investigating the Dynamics of Elk Population Size and Body Mass in a Seasonal Environment Using a Mechanistic Integral Projection Model

    Get PDF
    Environmentally mediated changes in body size often underlie population responses to environmental change, yet this is not a universal phenomenon. Understanding when phenotypic change underlies population responses to environmental change is important for obtaining insights and robust predictions of population dynamics in a changing world. We develop a dynamic integral projection model that mechanistically links environmental conditions to demographic rates and phenotypic traits (body size) via changes in resource availability and individual energetics. We apply the model to the northern Yellowstone elk population and explore population responses to changing patterns of seasonality, incorporating the interdependence of growth, demography, and density-dependent processes operating through population feedback on available resources. We found that small changes in body size distributions can have large impacts on population dynamics but need not cause population responses to environmental change. Environmental changes that altered demographic rates directly, via increasing or decreasing resource availability, led to large population impacts in the absence of substantial changes to body size distributions. In contrast, environmentally driven shifts in body size distributions could occur with little consequence for population dynamics when the effect of environmental change on resource availability was small and seasonally restricted and when strong density-dependent processes counteracted expected population responses. These findings highlight that a robust understanding of how associations between body size and demography influence population responses to environmental change will require knowledge of the shape of the relationship between phenotypic distributions and vital rates, the population status with regard to its carrying capacity, and importantly the nature of the environmentally driven change in body size and carrying capacity

    Multi-robot System Based on Model of Wolf Hunting Behavior to Emulate Wolf and Elk Interactions

    Get PDF
    Wolves are one of the most successful large predators on earth. Their success is made apparent by their presence in most northern ecosystems. They owe much of this success to their generalized hunting behavior which allows them to quickly and effectively adjust to different species of prey. The success of this hunting behavior for wolves is the inspiration for a project to bestow this behavior onto a system of robots with the hopes that they might utilize the apparent strengths of the behavior to achieve their own success

    Why do top predators engage in superpredation? FRom an empirical scenario to a theoretical framework

    Get PDF
    Lethal interactions can shape ecosystem structure, and consequently understanding their causes is ecologically relevant. To improve both empirical and theoretical knowledge on superpredation (i.e. predation on high-order predators), we studied an eagle owl population, including its main prey and mesopredators, and then we crossed these results with existing theories to provide a reasoning framework. We ftted our feld data into four main causes explaining lethal interactions: food stress, opportunistic superpredation, removal of a competitor, and removal of a potential threat. Empirically, superpredation seemed to be mostly determined by the combination of the food-stress and opportunistic-superpredation hypotheses, which highlights the complexity of the factors triggering superpredation. Therefore, besides being a response to lower food availability, superpredation may also represent an effective mechanism to remove potential predators and/or competitors, either intentionally or not. Our theoretical framework focused on the decision-making process in superpredation, considering four inter-related stages: encountering; attacking; and capturing a mesopredator; as well as consuming a mesopredator once killed. Superpredation almost certainly results from a complex process of decision-making, accounting for costs and benefts assessed moment-to-moment and for each mesopredator individual. It is time to build bridges between theoretical and empirical studies to further understand the mechanisms driving complex interactions among top predators and mesopredators

    Effects of Water-Level Management on Nesting Success of Common Loons

    Get PDF
    Water-level management is widespread and illustrates how contemporary climate can interact directly and indirectly with numerous biological and abiotic factors to influence reproductive success of wildlife species. We studied common loons, an iconic waterbird sensitive to timing and magnitude of waterlevel changes during the breeding season, using a before-after-control-impact design on large lakes in Voyageurs National Park (Minnesota, USA), to assess the effect of anthropogenic changes in hydroregime on their nesting success and productivity. We examined multiple competing a priori hypotheses in an information-theoretic framework, and predicted that magnitude of changes in loon productivity would be greater in the Namakan Reservoir, where water-level management was altered to mimic a more natural hydroregime, than in Rainy Lake, where management remained relatively unchanged. We determined outcomes from 278 nests during 2004–2006 by performing boat-based visits every 3–5 days, and measuring hydrologic, vegetative, and microtopographic covariates. Relative to comparably collected data for 260 total loon pairs during 1983–1986, productivity (chicks hatched/territorial pair) increased 95% in the Namakan Reservoir between the 2 time periods. Nest success declined in both lakes over the 2 study periods but less so in the Namakan Reservoir than in Rainy Lake. Flooding was a primary cause of nest failures (though second nests were less likely to flood). Nest predation appears to have increased considerably between the 2 study periods. Top-ranked models suggested that timing of nest initiation, probability of nest flooding, probability of nest stranding, and probability of nest success were each related to 2–4 factors, including date of initiation, timing of initiation relative to peak water levels, changes in the elevation of the nest edge, maximum waterlevel change between initiation and peak water levels, and maximum water-level change between initiation and nest outcome. The top model for all variables except stranding each garnered \u3e82% of total model weight. Results demonstrate that water-level management can be altered to benefit productivity of common loons. However, nuanced interactions between land-use change, invasive species, human development, recreation, climate change, and recovery of top predators may often complicate both management decisions and interpretation of water-level impacts on wildlife
    • …
    corecore