116 research outputs found

    Physiological and Behavioral Differences in Sensory Processing: A Comparison of Children with Autism Spectrum Disorder and Sensory Modulation Disorder

    Get PDF
    A high incidence of sensory processing difficulties exists in children with Autism Spectrum Disorder (ASD) and children with Sensory Modulation Disorder (SMD). This is the first study to directly compare and contrast these clinical disorders. Sympathetic nervous system markers of arousal and reactivity were utilized in a laboratory paradigm that administered a series of sensory challenges across five sensory domains. The Short Sensory Profile, a standardized parent-report measure, provided a measure of sensory-related behaviors. Physiological arousal and sensory reactivity were lower in children with ASD whereas reactivity after each sensory stimulus was higher in SMD, particularly to the first stimulus in each sensory domain. Both clinical groups had significantly more sensory-related behaviors than typically developing children, with contrasting profiles. The ASD group had more taste/smell sensitivity and sensory under-responsivity while the SMD group had more atypical sensory seeking behavior. This study provides preliminary evidence distinguishing sympathetic nervous system functions and sensory-related behaviors in Autism Spectrum Disorder and Sensory Modulation Disorder. Differentiating the physiology and sensory symptoms in clinical groups is essential to the provision of appropriate interventions

    Parasympathetic functions in children with sensory processing disorder.

    Get PDF
    The overall goal of this study was to determine if parasympathetic nervous system (PsNS) activity is a significant biomarker of sensory processing difficulties in children. Several studies have demonstrated that PsNS activity is an important regulator of reactivity in children, and thus, it is of interest to study whether PsNS activity is related to sensory reactivity in children who have a type of condition associated with sensory processing disorders termed sensory modulation dysfunction (SMD). If so, this will have important implications for understanding the mechanisms underlying sensory processing problems of children and for developing intervention strategies to address them. The primary aims of this project were: (1) to evaluate PsNS activity in children with SMD compared to typically developing (TYP) children, and (2) to determine if PsNS activity is a significant predictor of sensory behaviors and adaptive functions among children with SMD. We examine PsNS activity during the Sensory Challenge Protocol; which includes baseline, the administration of eight sequential stimuli in five sensory domains, recovery, and also evaluate response to a prolonged auditory stimulus. As a secondary aim we examined whether subgroups of children with specific physiological and behavioral sensory reactivity profiles can be identified. Results indicate that as a total group the children with severe SMD demonstrated a trend for low baseline PsNS activity, compared to TYP children, suggesting this may be a biomarker for SMD. In addition, children with SMD as a total group demonstrated significantly poorer adaptive behavior in the communication and daily living subdomains and in the overall Adaptive Behavior Composite of the Vineland than TYP children. Using latent class analysis, the subjects were grouped by severity and the severe SMD group had significantly lower PsNS activity at baseline, tones and prolonged auditory. These results provide preliminary evidence that children who demonstrate severe SMD may have physiological activity that is different from children without SMD, and that these physiological and behavioral manifestations of SMD may affect a child\u27s ability to engage in everyday social, communication, and daily living skills

    Development of a fidelity measure for research on the effectiveness of the Ayres Sensory Integration intervention.

    Get PDF
    OBJECTIVE: We developed a reliable and valid fidelity measure for use in research on Ayres Sensory Integration (ASI) intervention. METHOD: We designed a fidelity instrument to measure structural and process aspects of ASI intervention. Because scoring of process involves subjectivity, we conducted a series of reliability and validity studies on the process section. Raters were trained to score therapist strategies observed in video recordings of adult-child dyads. We examined content validity through expert ratings. RESULTS: Reliability of the process section was strong for total fidelity score (ICC = .99, Cronbach\u27s alpha = .99) and acceptable for most items. Total score significantly differentiated ASI from four alternative interventions. Expert ratings indicated strong agreement that items in the structural and process sections represent ASI intervention. CONCLUSION. The Ayres Sensory Integration Fidelity Measure has strong content validity. The process section is reliable and valid when scored by trained raters with expertise in ASI

    Goal attainment scaling as a measure of meaningful outcomes for children with sensory integration disorders.

    Get PDF
    Goal attainment scaling (GAS) is a methodology that shows promise for application to intervention effectiveness research and program evaluation in occupational therapy (Dreiling & Bundy, 2003; King et al., 1999; Lannin, 2003; Mitchell & Cusick, 1998). This article identifies the recent and current applications of GAS to occupational therapy for children with sensory integration dysfunction, as well as the process, usefulness, and problems of application of the GAS methodology to this population. The advantages and disadvantages of using GAS in single-site and multisite research with this population is explored, as well as the potential solutions and future programs that will strengthen the use of GAS as a measure of treatment effectiveness, both in current clinical practice and in much-needed larger, multisite research studies

    Fidelity in sensory integration intervention research.

    Get PDF
    OBJECTIVE: We sought to assess validity of sensory integration outcomes research in relation to fidelity (faithfulness of intervention to underlying therapeutic principles). METHOD: We identified core sensory integration intervention elements through expert review and nominal group process. Elements were classified into structural (e.g., equipment used, therapist training) and therapeutic process categories. We analyzed 34 sensory integration intervention studies for consistency of intervention descriptions with these elements. RESULTS: Most studies described structural elements related to therapeutic equipment and interveners\u27 profession. Of the 10 process elements, only 1 (presentation of sensory opportunities) was addressed in all studies. Most studies described fewer than half of the process elements. Intervention descriptions in 35% of the studies were inconsistent with one process element, therapist-child collaboration. CONCLUSION: Validity of sensory integration outcomes studies is threatened by weak fidelity in regard to therapeutic process. Inferences regarding sensory integration effectiveness cannot be drawn with confidence until fidelity is adequately addressed in outcomes research

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data
    corecore