955 research outputs found

    Enhancing endoscopic navigation and polyp detection using artificial intelligence

    Get PDF
    Colorectal cancer (CRC) is one most common and deadly forms of cancer. It has a very high mortality rate if the disease advances to late stages however early diagnosis and treatment can be curative is hence essential to enhancing disease management. Colonoscopy is considered the gold standard for CRC screening and early therapeutic treatment. The effectiveness of colonoscopy is highly dependent on the operator’s skill, as a high level of hand-eye coordination is required to control the endoscope and fully examine the colon wall. Because of this, detection rates can vary between different gastroenterologists and technology have been proposed as solutions to assist disease detection and standardise detection rates. This thesis focuses on developing artificial intelligence algorithms to assist gastroenterologists during colonoscopy with the potential to ensure a baseline standard of quality in CRC screening. To achieve such assistance, the technical contributions develop deep learning methods and architectures for automated endoscopic image analysis to address both the detection of lesions in the endoscopic image and the 3D mapping of the endoluminal environment. The proposed detection models can run in real-time and assist visualization of different polyp types. Meanwhile the 3D reconstruction and mapping models developed are the basis for ensuring that the entire colon has been examined appropriately and to support quantitative measurement of polyp sizes using the image during a procedure. Results and validation studies presented within the thesis demonstrate how the developed algorithms perform on both general scenes and on clinical data. The feasibility of clinical translation is demonstrated for all of the models on endoscopic data from human participants during CRC screening examinations

    Automated colonoscopy withdrawal phase duration estimation using cecum detection and surgical tasks classification

    Get PDF
    Colorectal cancer is the third most common type of cancer with almost two million new cases worldwide. They develop from neoplastic polyps, most commonly adenomas, which can be removed during colonoscopy to prevent colorectal cancer from occurring. Unfortunately, up to a quarter of polyps are missed during colonoscopies. Studies have shown that polyp detection during a procedure correlates with the time spent searching for polyps, called the withdrawal time. The different phases of the procedure (cleaning, therapeutic, and exploration phases) make it difficult to precisely measure the withdrawal time, which should only include the exploration phase. Separating this from the other phases requires manual time measurement during the procedure which is rarely performed. In this study, we propose a method to automatically detect the cecum, which is the start of the withdrawal phase, and to classify the different phases of the colonoscopy, which allows precise estimation of the final withdrawal time. This is achieved using a Resnet for both detection and classification trained with two public datasets and a private dataset composed of 96 full procedures. Out of 19 testing procedures, 18 have their withdrawal time correctly estimated, with a mean error of 5.52 seconds per minute per procedure

    Spatio-temporal classification for polyp diagnosis

    Get PDF
    Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-cancerous polyps. Computer-aided polyp characterisation can determine which polyps need polypectomy and recent deep learning-based approaches have shown promising results as clinical decision support tools. Yet polyp appearance during a procedure can vary, making automatic predictions unstable. In this paper, we investigate the use of spatio-temporal information to improve the performance of lesions classification as adenoma or non-adenoma. Two methods are implemented showing an increase in performance and robustness during extensive experiments both on internal and openly available benchmark datasets

    Polyp detection on video colonoscopy using a hybrid 2D/3D CNN

    Get PDF
    Colonoscopy is the gold standard for early diagnosis and pre-emptive treatment of colorectal cancer by detecting and removing colonic polyps. Deep learning approaches to polyp detection have shown potential for enhancing polyp detection rates. However, the majority of these systems are developed and evaluated on static images from colonoscopies, whilst in clinical practice the treatment is performed on a real-time video feed. Non-curated video data remains a challenge, as it contains low-quality frames when compared to still, selected images often obtained from diagnostic records. Nevertheless, it also embeds temporal information that can be exploited to increase predictions stability. A hybrid 2D/3D convolutional neural network architecture for polyp segmentation is presented in this paper. The network is used to improve polyp detection by encompassing spatial and temporal correlation of the predictions while preserving real-time detections. Extensive experiments show that the hybrid method outperforms a 2D baseline. The proposed architecture is validated on videos from 46 patients and on the publicly available SUN polyp database. A higher performance and increased generalisability indicate that real-world clinical implementations of automated polyp detection can benefit from the hybrid algorithm and the inclusion of temporal information

    Identifying key mechanisms leading to visual recognition errors for missed colorectal polyps using eye-tracking technology

    Get PDF
    BACKGROUND AND AIMS: Lack of visual recognition of colorectal polyps may lead to interval cancers. The mechanisms contributing to perceptual variation, particularly for subtle and advanced colorectal neoplasia, has scarcely been investigated. We aimed to evaluate visual recognition errors and provide novel mechanistic insights. METHODS: Eleven participants (7 trainees, 4 medical students) evaluated images from the UCL polyp perception dataset, containing 25 polyps, using eye tracking equipment. Gaze errors were defined as those where the lesion was not observed according to eye tracking technology. Cognitive errors occurred when lesions were observed but not recognised as polyps by participants. A video study was also performed including 39 subtle polyps, where polyp recognition performance was compared with a convolutional neural network (CNN). RESULTS: Cognitive errors occurred more frequently than gaze errors overall (65.6%) , with a significantly higher proportion in trainees (P=0.0264). In the video validation, the CNN detected significantly more polyps than trainees and medical students, with per polyp sensitivities of 79.5%, 30.0% and 15.4% respectively. CONCLUSIONS: Cognitive errors were the most common reason for visual recognition errors. The impact of interventions such as artificial intelligence, particularly on different types of perceptual errors, needs further investigation including potential effects on learning curves. To facilitate future research, a publicly accessible visual perception colonoscopy polyp database was created

    Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results from the MICCAI 2015 Endoscopic Vision Challenge

    Get PDF
    Colonoscopy is the gold standard for colon cancer screening though still some polyps are missed, thus preventing early disease detection and treatment. Several computational systems have been proposed to assist polyp detection during colonoscopy but so far without consistent evaluation. The lack of publicly available annotated databases has made it difficult to compare methods and to assess if they achieve performance levels acceptable for clinical use. The Automatic Polyp Detection subchallenge, conducted as part of the Endoscopic Vision Challenge (http://endovis.grand-challenge.org) at the international conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2015, was an effort to address this need. In this paper, we report the results of this comparative evaluation of polyp detection methods, as well as describe additional experiments to further explore differences between methods. We define performance metrics and provide evaluation databases that allow comparison of multiple methodologies. Results show that convolutional neural networks (CNNs) are the state of the art. Nevertheless it is also demonstrated that combining different methodologies can lead to an improved overall performance

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe
    • 

    corecore