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Abstract

Colorectal cancer (CRC) is one most common and deadly forms of cancer. It has a

very high mortality rate if the disease advances to late stages however early diagno-

sis and treatment can be curative is hence essential to enhancing disease manage-

ment. Colonoscopy is considered the gold standard for CRC screening and early

therapeutic treatment. The effectiveness of colonoscopy is highly dependent on the

operator’s skill, as a high level of hand-eye coordination is required to control the

endoscope and fully examine the colon wall. Because of this, detection rates can

vary between different gastroenterologists and technology have been proposed as

solutions to assist disease detection and standardise detection rates.

This thesis focuses on developing artificial intelligence algorithms to assist

gastroenterologists during colonoscopy with the potential to ensure a baseline stan-

dard of quality in CRC screening. To achieve such assistance, the technical contri-

butions develop deep learning methods and architectures for automated endoscopic

image analysis to address both the detection of lesions in the endoscopic image and

the 3D mapping of the endoluminal environment. The proposed detection models

can run in real-time and assist visualization of different polyp types. Meanwhile

the 3D reconstruction and mapping models developed are the basis for ensuring

that the entire colon has been examined appropriately and to support quantitative

measurement of polyp sizes using the image during a procedure.

Results and validation studies presented within the thesis demonstrate how the

developed algorithms perform on both general scenes and on clinical data. The

feasibility of clinical translation is demonstrated for all of the models on endoscopic

data from human participants during CRC screening examinations.
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Chapter 1

Introduction

Cancer is one of the leading causes of death and it is the most important barrier

to increase life expectancy in the 21st century alongside cardiovascular disease. It

was responsible for 9.6 million deaths, with 18.1 million new cases diagnosed in

2018 alone. Globally, colorectal cancer is the third most common form of cancer,

accounting for 10.2% of all forms of cancer, and it is the second most deadly, being

responsible for 9.2% of all cancer related deaths [1].

1.1 Colorectal Cancer
Worldwide, nearly 5 million people are living with Colorectal cancer (CRC) at dif-

ferent stages and treatment pathways. CRC accounted for 1.8 million new cases and

881,000 deaths in 2018, being responsible for 1 in 10 cancer deaths [1]. The highest

colon cancer incidence rates can be found in Europe, Australia, Northern America

and Eastern Asia, whereas rates in developing countries are lower but rising [1].

Finding incidence and mortality trends can be challenging but Arnold et al. [22]

identified three global patterns linked to country development levels: rise in inci-

dence and mortality in China, Russia and Brazil; increase in incidence but a lower

mortality in Canada, United Kingdom, Denmark and Singapore; both decreasing in

mortality and incidence in the United states, Japan and France [1, 23].

The rises in incidence are attributed to the influence of dietary patterns, obesity

and lifestyle factors, whereas best practices in cancer treatment and management in

developed countries are responsible for lower mortality [1, 23]. The early screening
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Figure 1.1: Percentages of new cancer cases and deaths worldwide in 2018 [1].

and detection programs implemented in the United States and Japan in the 90s are

believed to had an impact in these countries‘ colon cancer survival and mortality

rates [1].

Taking a global view of the disease, CRC mortality continues to rapidly increase

and is projected to continue to do so especially with longer life expectancy and

the higher incidence in elderly populations. Since 2012, the number of colon can-

cer deaths increased from 668,000 to 881,000 [1, 23]. An incidence and mortality

comparison with other common types of cancer can bee seen in Figure 1.1.

The biological progression of the CRC disease exhibits a long, multiprocess pro-

gression from precancerous lesion to malignant tumours and its mortality is highly

correlated to the stage at which diagnosis occurs [24]. Some illustrative examples

of the appearance of different polyps are presented in Figure 1.2. The 5-year sur-

vival rate is 90% for localized disease, 70% for regional, and just 10% after it has

metastasized [23, 24]. These figures point to the need for strong screening pro-

grams capable of detection early-stage CRC and precancerous structures that can

be removed to reduce cancer risk. If detected early, the pre-cancerous polyps are

removed the survival rates are significantly higher and hence screening and detected

can be life saving procedures [23].
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Figure 1.2: Examples of neoplastic lesions in the colon tract [2].

Currently, there are no ideal CRC screening procedures and all the current modal-

ities for screening present trade-offs between performance, affordability, patient

comfort and reduction in mortality. Despite different approaches being explored

[25], diagnostic colonoscopy is still considered the gold standard for CRC detec-

tion, screening and diagnosis. It provides direct visualization of the inner surface

of the colon, it allows the acquisition of biopsies and to perform therapeutic proce-

dures on early stage neoplastic lesions through polypectomy to remove them [25].

Other screening test, such as CT colonography and stool blood test, are available

but these exhibit varying levels of performance, patient compliance and hence have

limited adoption as healthcare management practice standards [24].

1.2 Colonoscopy

Colonoscopy is an endoscopic procedure that allows the examination of the large

bowl and the distal part of the small bowel through insertion of camera, lightsource

and adjunct instrumentation to explore the endoluminal cavity. Colonoscopy pro-

vides direct visualization of the inner surface of the colon, enables the acquisition

of biopsies and performing therapeutic procedures on early stage neoplastic lesions

[26].
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Colonoscopies can be performed in hospitals equipped with endoscopy suites, an

ambulatory surgical center or even potentially in a physicians’ office. Workflow and

location of the intervention vary depending on the healthcare system, availability of

experts, equipment and sterilization facilities, but in recent years there has been

major interest to allowing general practitioners to perform some investigations. En-

doscopy/colonoscopy units can range in size from 1 to 10 or more procedure rooms,

and in staffing from one or two to over 50 members for clinical staff [5]. The setup

of a typical colonoscopy room is illustrated in Figure 1.3. Modern colonoscopes are

strong enough to permit the endoscopist to push the device through the 1.8 metre

long colon and flexible enough to bend around the sharp turns and manouvre the

device to observe all the endoluminal tissue surfaces. The colonoscope transmits

the hand actions of the colonoscopist from the proximal shaft down to the tip where

the light and camera are placed. The scope must be sturdy enough to withstand the

repetitive use and cleaning cycles for sterilization, yet delicate enough to provide

precise control and visualization and ensure compliance to avoid injury to the colon

[5]. A typical endoscope is illustrated in Figure 1.3 but many different variations

are available and have been explored.

The main goals of colonoscopy and the process of scope insertion and withdrawal

are to traverse the serpentine colon safely and efficiently, and to inspect the mucosa

thoroughly. During insertion, most colonoscopists focus on the technical demands

of navigating the colon tract; during scope withdrawal, the focus shifts to examining

the colon surface [5]. Insertion tends to be challenging when the colon is tortuous

and difficult to navigate, meanwhile the examination on withdrawal is subject to

visibility and bowel preparation quality as well as the nature of the present polyps

and their observability [5].

While colonoscopy is accepted as the most effective method of screening the colon

for neoplasia, its effectiveness in reducing colon cancer incidence depends on ade-

quate visualization of the entire colon, the diligence in examining the mucosa, and

the quality of the bowel preparation [26, 25]. The colon lining is enfolded, con-

voluted, and expansive, and polyps can be hidden or difficult to observe due to the
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(a) (b)

Figure 1.3: (a) Typical colonoscopy unity setup. (b) Typical video colonoscope. [3, 4]

forward looking orienation of the endoscope. Even under optimal circumstances,

polyp detection is imperfect [5] and can be dependent on multiple combinatorial

factors. The exam is also highly dependent on the operators’ skills both in manip-

ulating the scope and in analysing the endoscopic images to detect abnormalities,

this needs a high level of hand-eye coordination to control the endoscope and exam-

ine the majority of the colon wall. Leufkens et al. [27] reported that missed polyp

detection rates could reach values as high as 25% in certain centres meanwhile they

could be as low as 3-5% in others which is a huge variation. Furthermore, polyps

have a large variety of polyps in the size, shape, colour and textures and can be

easily mistaken with colonic folds.

Different optical imaging technologies can be used during colonoscopy to enhance

visualization of diseased tissue. Two of the most widely used are near focus and

narrow band imaging (NBI) [28].

Near focus allows the operator to get close to the mucosa with higher resolution

and magnified visualization of the tissue and capillary network. This is achieved by

optimizing the structure of the lens integrated in the distal end of the colonoscope.

This way, endoscopists can obtain information on the mucosal surface which can

not be obtained by electronic magnification [28].

NBI is usually compared with traditional stain-based chromoendoscopy, providing

higher contrast but without the use of dyes. It works by activating two electronic
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filters in the white light path to limit it to a center wavelength of 415 (blue) nm

and 540 nm (green). These wavelengths coincide with the central absorption peak

of hemoglobin, so structures such as capillaries and veins are represented darker,

which provides a contrast to the surrounding mucosa [28]. Because it emphasizes

surface microvasculature and the boundary between different types of tissue, it fa-

cilitates the characterization of GI lesions, especially neoplasia. Also, it has been

used in the identification of esophagitis, Barrett’s esophagus, pit patterns in colorec-

tal polyps and tumors, and the detection of dysplastic tissue patients with ulcerative

colitis [28].

Other commercial endoscopic systems provide more contrast-enhancement tech-

niques with different working wavelengths and penetration depths. They all are

applied in various departments according to their technical characteristics [28].

1.3 Polyp appearance, location and detection

A polyp is a localized abnormal growth arising on the colon wall. Polyps vary in

size, shape, type of attachment to the colon wall, location, and histopathology. Most

polyps are clinically inconsequential because only about 5% of polyps progress

to cancer, but it is impossible to tell a polyp‘s future development from its gross

morphology. Therefore, in practice, most polyps should be resected [5].

Adenomatous and hyperplastic polyps are the most commonly detected polyps and

are the most likely to be found during screening colonoscopy. All adenomas have

malignant potential, but the majority are benign when detected. In contrast, hy-

perplastic, mucosal, inflammatory, and hamartomatous polyps have no malignant

potential [29].

Worldwide, the prevalence rate of adenomas shows geographic variation and corre-

lates with the regional incidence rates of colorectal cancer. Autopsy studies from

various regions of the world have reported prevalence rates ranging from 22 to 61

percent [29]. Colonoscopy studies have demonstrated rates ranging from 25 to 41

percent [29]. The risk increases with age. Adenomas greatly in size, but most are

less than 1.0 cm in diameter. A National Study found that 38 percent of adenomas
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Figure 1.4: Paris classification of superficial colonic polyps [5, 6]

were only 0.5 cm or less, 36 percent were 0.6 to 1.0 cm, and 26 percent were larger

than 1.0 cm. From these, about 60 percent of patients have a single adenoma and

40 percent have multiple adenomas [29].

Hyperplastic polyps account for the majority of non-neoplastic colorectal polyps.

Studies report prevalence rates of 20 to 34 percent [29]. They generally are small,

0.5 cm or less, and appear flat or convex and relatively pale or the same color as the

surrounding mucosa [29].

Polyps can also be classified based on their size and shape. The Paris classification

[6] provides widely accepted nomenclature for describing the colonoscopic appear-

ance of superficial neoplasms. Polyps elevated less than 2.5mm above the mucosal

surface are considered flat. If a lesion grows bigger than 2.5mm without a stack it

is classified as sessile. As polyps grow, peristalsis may pull on the polyp, creating

a pedunculated polyp, which has a stalk [5, 6]. This criteria is illustrated in Figure

1.4.

Most colon polyps are less than 5 mm in diameter and sessile. Small and medium

sized polyps (6 to 9 mm in diameter) comprise approximately 80% of all colon

polyps. Generally, 60% of polyps are located between the rectum and the splenic

flexure (the first big curvature of the colon, Figure 1.5). However, in patients over

70 years of age, polyps are more common towards the right side of the colon. Ade-

noma prevalence varies according to genetic risk, age, gender, and other factors

such as obesity or smoking. During a western screening/surveillance population,

the prevalence of adenomas reaches approximately 50% [5].
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Figure 1.5: Illustration of the main sections of the human colon [7].

If no polyps are found on screening colonoscopy, it is common to suggest a 5 to 10

years interval until the next colonoscopy, however, this does not account for missed

detection. Most missed polyps tend to be small and have low malignant risk [30].

However CRC has been reported in patients who have had a negative screening

examination within the previous 3 years, with death from CRC occurring within 7

years; some of these cancers presumably developed from precursor lesions that were

missed at the previous procedure [5]. One effective way to increase the detection

rate in colonoscopy exams is the incorporation of computer-aided diagnostic (CAD)

systems [31].

1.4 Clinical challenge
Colorectal polyps may account for small amounts of stool blood but they are pre-

dominantly asymptomatic. Because of this, the best chance of detection is during

screening examinations for colorectal cancer [29].

The skill of the endoscopist affects the thoroughness of the examination, which

can hinder the adenoma detection rate (ADR). From an operator point of view,

colonoscopy has a steep learning curve and extensive training and experience are

necessary to maximize the accuracy and safety of the procedure [32]. An inade-

quate bowel preparation can also limit the visualization of the colonic mucosa [32].

Examples of poor bowel cleasing can be seen in Figure 1.6c (a) and (b). Because

of this, large differences in the rates of detection of adenomas are reported, even
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(a) (b) (c)

Figure 1.6: Colonoscopy images with three different levels of bowel cleansing. [8].

among experienced gastroenterologists [33].

The main objective of the research presented in this thesis is to extract and provide

extra information from traditional colonoscopy withdraws to guarantee a minimum

standard of quality in every CRC screening. The problem is researched and devel-

oped from a computer vision perspective by using recent developments in artificial

intelligence and, in particular, the development of deep learning models that rely on

large datasets which are increasingly available with digital endoscopy [34].

Despite significant progress in recent years, CAD for CRC screening is still not in

routine clinical use. Most research focus on automatic polyp detection, which is

a challenging problem. There is large variety of polyps in size, shape, colour and

textures, which alongside the presence of specular reflections, endoluminal folds

and blood vessels induces a significant number of false detections.

Recent randomize trials show that the use CAD systems significantly increase ADR,

which is directly linked to a lower incidence of CRC [35, 36, 37].These studies

suggest that 80% of missed polyps are shown on screen and are missed due to

human factors, such as inexperience, fatigue or distraction [37]. A CAD system

could serve as an additional eye for the endoscopist supporting them in these cases.

False alarms from this system can still be easily ignored by the operator with a

minimal risk to the patient of increasing the procedure duration.

Different computer vision methods can be used to extract quantitative metrics to

help the operator to make more informed clinical decisions. For example, the Paris

classification [6], one of the most common ways to characterize polyps, uses size,

shape and texture to differentiate between different lesions. So it would be expected
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Figure 1.7: Examples of different commercial endoscopic capsules [9].

that the extraction of depth information from a colonoscopy video would facilitate

diagnosis. Furthermore, depth estimation is closely related to localization and map-

ping technology which would allow the computation of the extent of the examined

colon.

Colonoscopy cannot guarantee a full examination of the colonic surface because

of incomplete camera orientations and occlusions. The missing regions are hard

to notice from a person perspective. Therefore, a useful system would be able to

compute missing regions from an endoscopic video alert the endoscopists when

large regions went unexamined [38].

The ability to map a colon or an endoluminal environment is highly dependent of

the optical system used and any sensors than have been embedded to form part of

the device [25]. Traditional colonoscopes create very jittery and fast paced video

feed due to the difficulty of navigation and the speed of the motion with respect to

the proximity of tissues in front of the tip’s camera. Endoscopic capsules, such as

PillCam [39], provide smoother video feeds but, because the colon is deflated, large

section of the colon surface are not seen and bowel preparation can be poor because

it is reliant on patient compliance. Examples of multiple endoscopic capsules is

presented in Figure 1.7 More recently, several robotassisted colonoscopy systems

have been proposed [40, 41]. These allow more ergonomic movement of the scope
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inside the patient and, as a result, more stable visualizations of the mucosa sur-

face. However, even with perfect visual conditions the colon creates a particularly

hard environment for localization and mapping, has it presents mostly non-rigid and

largely uniform looking surfaces. Furthermore, because most scopes are monocular,

scale ambiguity adds to the problems though this can be used to also detect depth

and potentially automatically size polyps [42].

Despite the challenges, creating artificial intelligence systems to aid both the nav-

igation and detection of colonoscopies is critically important. This importance is

likely to increase in coming years due to the likely emergence of robotic endo-

scopes, for example such as developed by the Endoo Project (Endoscopic versatile

robotic guidance, diagnosis and therapy of magnetic-driven soft-tethered endolumi-

nal robots), funded by European Community’s Horizon 2020 programme to develop

an integrated robotic platform for the navigation of a soft-tethered colonoscope ca-

pable of performing painless diagnosis and treatment. A representation of the first

prototype for the project is shown in Figure 1.8. For systems like Endoo to become

clinically translatable a major effort and innovation relies on hardware development,

for example magnetic navigation of the camera, but there is also an inherent reliance

on vision methods that can assist the operator during the clinical procedure and also

potentially link to the robotic control loop for safer and effective colonoscopic pro-

cedures.

1.5 Thesis contributions

The main focus of this thesis is the development of algorithms and methods that can

be used to underpin solutions for better CRC screening. In particular, current defi-

ciencies are addressed on two fronts: reducing the number of missed polyp during

an endoscopic examination and ensuring the full endoluminal surface of the organ

is inspected during a procedure (again, in order to ensure no polyps are missed).

From an AI and computer vision perspective, these clinical problems are addressed

as technical object detection and 3D mapping challenges. As such, all research

presented falls under one of these two umbrellas of computer vision research areas.
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(a)

(b)

(c)

Figure 1.8: Illustration of the Endoo project’s setup (a) , capsule (b) and intended use (c).
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Chapter 2 reviews present the technical background and a review of the literature

relevant to the work in the thesis. It succinctly describes the state of the art for

computer aided polyp detection in colonoscopy and also for vision-based mapping

of the endoscopic environment.

Chapter 3 focuses on presenting a new framework for automatically detecting and

segmenting polyps in colonoscopy images. Experimentally the proposed framework

is validated using comparative evaluation between different pre-trained network ar-

chitectures. This was one of the first uses of fully convolution neural networks for

polyp segmentation. The methods were published at SPIE Medical Imaging in 2017

and the Journal of Medical Robotics Research. The models created also surpassed

state-of-the-art performance and achieved top positions in the 2017 MICCAI polyp

detection challenge as part of EndoVis 2017 and publihsed in IEEE Trans Medical

Imaging.

Chapters 4 focuses on enhancing the navigation capabilities during colonoscopy by

developing a new method to tackle the stereo matching problem. Specifically, a new

stereo matching Siamese architecture is proposed as an essential component in high

quality CNN stereo matching. It partially tackles the challenge of improving the

network’s effective receptive field, a limitation of how wide a CNN can effectively

”see”, an essential propriety when you corresponding points with a certain displace-

ment (or disparity). Aside from working on endoscopic image data this method was

generally effective on natural images and was published in Pattern Recognition Let-

ters.

Chapter 5 expands the stereo model from Chapter 4 by proposing an end-to-end

trained model capable of incorporating contextual information when computing

stereo disparity maps. Incorporating a hierarchical structure goes further towards

effective improvement of the network’s reception field without losing the ability to

distinguish small pixel displacements. The culmination of this work is a fast and

memory efficient stereo matching network capable of accurately estimate complex

natural images disparity maps and generalise to medical environments. The method

was published in Computer Methods in Biomechanics and Biomedical Engineering.
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Chapter 2

Computer-aided diagnosis for

colonoscopy

CAD is a huge topic that can broadly include most of the recent medical imaging

research. Clinicians can use CAD as a ”second opinion” to make their final decision

so performance of the system does not have to be comparable to or better than that

by physicians, but needs to be complementary [43].

This thesis focuses on two of the major causes for missed polyp detection in

colonoscopy: miss interpretation of visual queues and insufficient diligence in ex-

ploring the colon surface. The first problem can simply be minimized with the use

of automatic polyp detection algorithms. The second one is a bit more complex

but, from a computer vision angle, it could be viewed as a localization and mapping

problem. A 3D reconstruction of the environment would easily allow to spot areas

that were missed during the withdrawal. In this chapter we highlight methods that

are relevant for these two problems and that can assist clinicians during colonoscopy

procedures.

2.1 Computer-aided detection
Automatic polyp detection in colonoscopy videos has been an active research topic

during the last 20 years. The majority of early detectors focused on simple and easy

to compute visual characteristics, such as edges and colour but as computational

power and data availability increased the paradigm shifted towards deep learning
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Figure 2.1: Example of a polyp detection system using handcrafted features. (a) The input
polyp image (b) Computed edge map (c) Polyp edge filtering (d) voting scheme (e) Final
classification. [10]

[34]. The evolution of the algorithms reflects the general computer vision trends

from the last 10 years.

2.1.1 Hand-crafted features

Some of the first polyps detection methods used low-level shape descriptors, such as

edge detectors [44, 45, 46, 46], to estimate polyp boundaries. More complex shape

descriptors like Hessian filters and histograms of oriented gradients [47] have also

been used to identify blob-like structures. Bernal et. al [48] proposed a new bound-

ary model by finding intensity valleys that usually surround a polyp. They make the

model more robust to blood vessels and specular highlights by computing metrics

such as completeness, continuity and concavity. While the methods performs well

in a large dataset, it still struggles with small and flat polyps.

Other methods tried to use colour and texture as a discerning factor in polyp de-

tection [49, 50]. Wavelet transformations [51, 52] were used to extract texture

statistical texture to classify different image regions. MPEG-7 shape and texture

descriptors have also been used for polyp detection in endoscopic capsule images

[53]. More simple descriptors such as local binary patterns [54] and co-occurance

matrices [55] have also been studied. More recently, Tajbakhsh et al. [10] proposed

a hybrid shape and context approach by extracting patches around edges in the im-

age and use a two-fold classification to discard non-polyp patches. An illustration

of this proposed pipeline is shown in Figure 2.1.

Some hand-crafted feature methods use supervised learning, such a linear discrimi-

nant analyses [51], support vector machines [47, 55, 52, 56] or random forests [10],

as a way to create their final classifiers. More recently, research focus has moved
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towards more end-to-end approaches.

A summary of all handcrafted feature methods is presented in Table 2.1.
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2.1.2 Deep learning

Propelled by large scale challenges, such as ImageNet [59], deep learning revolu-

tionized many fields in computer vision, surpassing traditional methods in classifi-

cation, segmentation, detection and tracking problems.

For polyp detection, the use of deep learning was largely made possible by the

MICCAI endoscopic vision challenge [34]. It was the first source of enough data

to train complex deep learning methods and it provided a validation framework

that allowed for better comparison between different methods. Since then several

other datasets with different anatomical landmarks and phatological findings were

released, such as the Kvasir [60] and Nerthus [8] datasets.

The results reported in the first MICCAI challenge [34] showed a superior perfor-

mance from deep learning methods, such as the OUS and CUMED entries. The

description of methodologies is limited, but OUS used a customized version of

Alexnet [61], a popular classification architecture, while CUMED used a more so-

phisticated model that fuses information from layers at different resolutions [62].

Since the release of the MICCAI challenge data the number of publications on the

field grew significantly. At their core, most deep learning methods follow the same

principle: one or more convolution layers followed by a down-sampling operation,

usually a pooling layer. However, the number of layers used varies wildly, going as

low as 3 [63, 64] or using more than 150 convolution operations [65]. The way that

models approach the problem can also differs, using the networks to do classifica-

tion, segmentation or detection.

2.1.2.1 Classification Networks

For polyp classification, CNNs take a fixed size input image and output a binary

label. This requirement can be handled by sampling small patches from the original

image [63, 31, 11, 66, 67, 68, 64] or by resizing the full image to a specific set

of dimensions [69]. The patches used in classification can be obtained by simply

dividing the original image in sequentially smaller patches [63, 67, 68, 64] or by

creating a candidate proposal step, usually by using some kind of edge detector

[31, 11, 66]. An example of on of these architectures is illustrated in Figure 2.2.
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Figure 2.2: Illustration of the polyp classification system proposed by Tajbakhsh et al. [11].

Several methods have tried to provide CNN models with more descriptive infor-

mation than simple RGB channels by using histogram of oriented gradients [64],

hue histograms [64], color wavelets [68] or edge information [66]. Tajbakhsh at

al. [11] took this concept even further by proposing an ensemble of CNNs, each

responsible for encoding meaningful information extracted from colour, shape and

temporal features. Alternatively, Park et al. [63] resampled their input samples

with three different scales, using their concatenated feature representation for its

final classification.

Most classification networks used for polyp detection employ a custom architecture

that they train from scratch [63, 31, 11, 66, 68, 64]. This provides the flexibility to

use different kinds of input domains as well as control trade offs between accuracy

and computational load and speed. Training deep models from scratch require a

large amount of data and make it prone to overfitting so transfer learning approaches

have also been proposed. Models trained in large natural images datasets, such as

the ImageNet [59], can be used as feature extractors [69] or fine-tuned [67] for

the polyp detection problem. Fine-tuning pre-trained models provides better, or in

the worst case, similar performance than designing and training the same network

model from scratch [70].

2.1.2.2 Detection Networks

Alternatively to classification CNNs, detection networks try to identify a bound-

ing box around the object of interest to locate it within the image. Unlike some

classification networks that use external region proposed algorithms, more recent
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Figure 2.3: Illustration of the polyp detection system proposed by Shin et al. [12].

methods aim integrate the region proposal within the detection network, improving

both accuracy and computational time [12, 71].

For polyp detection, different versions of the faster recursive CNN (R-CNN) [72]

have been proposed by using Resnet [12, 73, 74] or the VGG-16 [71] as their feature

extractors. This system proposed by Shin et al. [12], illustrated in Figure 2.3,

further expanded the traditional R-CNN to accept sequential frames in a video in

order to reduce false detections.

Differently from R-CNN, ”you only look once” (YOLO) [75] and ”single shot de-

tection” (SSD) [76] architectures don’t require region proposals because they en-

capsulate all computations in a single network. Usually, one-stage methods are

faster and easier to train but come with small drops in accuracy [77]. Liu et al. was

able to sucessufly use SSD for polyp detection by studing three diferent kinds of

feature extractors, Resnet50, VGG16 and InceptionV3 [77].

2.1.2.3 Segmentation Networks

Finally, the polyp detection can be approached as a segmentation problem. Unlike

classification and detections, segmentation requires a dense output map, with the

same spatial resolution that the input. Because most networks use downsampling

operations to increase their receptive field, upsampling strategies are required to

recover the initial spatial resolution. While simple interpolation operations can be

used, such as bilinear interpolation [78], most methods use deconvolutions to obtain
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Figure 2.4: Depiction of the standard encode-decoder architecture used for polyp segmen-
tation. [13]

dense segmentation maps [79]. Alternativly, upsampling can also be performed by

unpooling, where the indices of the pooling layers are recalled to upsample the

feature maps [80].

One of the first uses of CNNs in segmentation was achieved by converting tradi-

tional classification architectures [79]. By replacing their fully connected layers to

convolutions and by using decovolution to upsample the coarse predictions, Long

et al. was able to create accurate segmentation models. They also proposed to com-

bine coarse, high layer information with fine, low layer information by upsampling

different levels of the networks [79]. The same principle, with multiple variants,

has been used for polyp detection [81, 65, 13, 82, 83, 84]. All methods use one

pretrained deep model, such as VGG [81, 65, 13, 83, 84] or a version of ResNet

[65, 82], with one[81, 65] or more deconvolution layers [13, 82, 83, 84] used to

upsample the coarse segmentation maps.

More complex upsampling techniques have been proposed by using deconvolution

networks. The convolution and deconvolution parts of these models work as en-

coder and decoders, respectively. Generally speaking, encoder-decoder networks

are designed and structures in a symmetric way, which allows the propagation of

context information to higher resolution layers [80, 14, 85]. A few of the most pop-

ular encoder-decoder segmentation architectures are the DeconvNet [80], SegNet

[85] and U-Net [14], with most of them having been exploited for polyp segmen-

tation [86, 13]. An illustration of the SegNet is presented in Figure 2.4 and one of

the U-Net architecture is visible in Figure 2.5. There are also several examples of
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Figure 2.5: Illustration of the U-Net segmentation architecture[14]

small changes in the U-Net that improve polyp segmentation, such as changes in

the number of its parameters [87], adding nested skip connections [88] or adding a

new branch to the encoder with pretrained a VGG model [89].

2.1.2.4 Video detection

According to the MICCAI 2015 polyp detection challenge [34] CNN approaches

severely outperform hand-crafted methods but they still suffer from a high false

positive rate. More recent approaches try to tackle this problem by exploiting tem-

poral temporal dependencies.

Handcraft methods can easily filter out detection outputs that do not follow smooth

movements in a sequence. A simple approach is to just account for detections that

are continuous in a predetermined number of sequential frames [90, 91, 92]. Qadir

et al.[93] uses the euclidean distance between regions of interest proposed by a

faster-RCNN and SSD networks in sequential frames to eliminate false posives.

More sophisticated methods try to learn temporal information within the model.

Learning temporal, rather than merely spatial, representations has been explored

in human action recognition [94] but progress is still slower than in image analysis.



2.1. Computer-aided detection 38

Figure 2.6: Illustration the hybrid 2D-3D segmentation network [15].

Action recognition across frames requires the spatial information to be captured and

to be compensated for camera movement. Theres local and global motion which

needs to be captured for robust predictions [94, 95]. In case of medical imaging, the

temporal context may not be as important because only short temporal context is

needed, but data availability is still the main obstacle to the use of temporal CNNs.

For colonoscopy one of the first uses of temporal networks was reported by using a

simple 3D classification networks [96, 91]. As more video data is collected, more

sophisticated methods such as long-short-term-memory (LSTM) networks [97] or

tube convolutional neural network (T-CNN) [94] could be explored. More recently,

and hybrid architecture [15] has been proposed for polyp segmentation. An illus-

tration of the hybrid 2D-3D architecture is presented in Figure 2.6. The two-step

temporal segmentation is capable of learning a spatial representation of polyps in

the 2D stage, allowing to apply transfer learning from larger 2D datasets, while the

3D stage learns to generate temporally coherent polyp segmentations.

2.1.3 Clinical studies for computer-aided detection

With the success reported by several artificial intelligence systems, many studies

have focused on large-scale validation and how CAD systems affect the ADR [98,

16]. Most clinical studies have limited description of their methodology but they
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Figure 2.7: Schematically outline of artificial intelligence system developed by Wang et al.
[16].

can usually be grouped in the same way as the previous section: classification [98,

96, 91, 99, 100, 101], detection [102, 103, 90, 104] and segmentation [16, 105, 106].

The illustration of one of these systems is presented in Figure 2.7

These studies are conducted by collecting video frames [96, 102, 16, 105, 92] or

sequences [90, 98, 99] from real colonoscopy procedures and have them annotated

by one or more clinical specialists. The scale of the studies is usually described

by the size and variety of the datasets collected. This ranges from anything with

a few hundreds polyps and a few thousand frames [98, 101, 105] to datasets with

thousands of polyps and hundreds of thousands of images [16, 91, 104].
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One-to-one comparisons between studies are difficult due to the use of different

datasets, metrics and validation protocols. Broadly speaking, all methods report

high sensitivity and accuracy with values in near 90% or higher. The metrics eval-

uating false detections are more volatile, meaning that most methods still struggle

with false positives. A summary of all these clinical studies is presented in Table

2.2.

Independently of how good automatic polyp detection gets, they are useless if

polyps do not get into the view of the colonoscope. This is why it is important

to maximize the surface of the colon that is examined. Because a fully automatic

control of a colonoscope [108] is extremely difficult, a good alternative is to provide

the operator with a 3D map of the surface examined and highlight areas that were

missed.

2.2 Colon mapping

One of the major difficulties of a colonoscopy exam is guarantee that the full extend

of the colon surface is actually visualized [26]. Some commercial devices, such as

ScopeGuide and Scopepilot, use electromagnetic sensors along the colonoscope to

provide a 3D representation of the shape and position of the endoscope inside the

body [109]. The colonoscope configuration is displayed alongside the endoscopy

view during the procedure. This information is mostly used by the operator avoid

scope loops inside the body, which can cause discomfort to the patient. While

electromagnetic tracking could easily be integrated into a mapping algorithm, com-

mercial systems maintain this information in a close loop.

While solving this problem through imaging alone is difficult, localizing and map-

ping the environment through video is one of the classical computer vision prob-

lems, and it could be used to guide or inform the operator during the procedure.

Although most endoscopes have a single camera, monocular 3D reconstruction suf-

fers from inherent scale ambiguity. New generation colonoscopes [108, 9] offer

stereo solutions so we focus our efforts in 3D stereo Reconstruction.

Being a fundamental vision problem, there is extensive literature about stereo
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matching [110]. A comprehensive review is outside of the scope of this thesis and

we instead focus on recent learning approaches. A CNN based 3D reconstruction

algorithm would allow the incorporation of other artificial intelligence tools, creat-

ing a unified, multi purpose artificial intelligence system for endoscopic navigation.

It is however important to point out that most deep learning stereo methods still

try to implicitly integrate the traditional four steps of the stereo matching problem:

matching cost computation, cost aggregation, disparity computation and disparity

refinement [110].

One of the first successful uses of deep learning for stereo trained a Siamese net-

work to compute a matching cost between two small image patches [111]. Luo

et al. [112] made this approach more efficient by training a network that computes

matching costs for every possible disparity in a single pass . However, both methods

did not employ an end-to-end learning strategy and used extensive post processing

procedures, including cost aggregation, semi-global matching, and disparity map

refinement.

Recently, end-to-end methods have been developed in order to avoid post-

processing. In most approaches [17, 113, 114], both images are passed trough

a Siamese architecture that creates a high level representation of the data. The

way that deep features are aggregated and used for disparity computation is usually

where methods more intensely diverge. DispNetC [115] uses a correlation layer

that computes the inner product between deep features extracted from the stereo

pair. It then uses an a encoder-decoder architecture to infer the final disparity map.

The architecture can be extended by adding a second network that calculates multi-

scale residuals in order to rectify the disparity estimated in the first stage [113].

The concept can be elaborated even further by proposing a model divided in three

parts [114]. First, deep multi-scale features are extracted using a Siamese network.

The second part performs matching cost calculation and aggregation, estimating a

initial disparity map. Finally, a subnetwork refines the initial disparity using feature

constancy.

A new end-to-end architecture, the GC-Net, capable of cost volume regularization
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Figure 2.8: Representation of the Geometry and Context Network (GC-Net) for stereo
depth regression architecture. [17]

by using 3D convolutions has recently been reported by Kendall et al.[17]. This ar-

chitecture is represented in Figure 2.8. Unlike previous methods, the GC-Net uses

manually aligned features as a cost volume, allowing it to learn its own similarity

metric and regularization. However, 3D CNNs are difficult to train and require a

much larger computational power. Chang et al. [116] further reduced the error

this architecture can achieve by improving the quality of the features extracted to

build the cost volume. They used techniques inspired from semantic segmentation,

to extract deep features with different scales and location. However, the manual

alignment of deep features to construct a cost volume and 3D convolutions are both

computationally and memory demanding operations. Also, correlation layers col-

lapse the feature dimension when computing the cost volume, limiting the context

information that can be used during disparity regularization.

Stereo reconstruction in endoscopic images is significantly more challenging than

in natural images, because of the large lens distortion, texture-less areas, occlusions

introduced by the surgical tools, specular highlights and blood [117]. Furthermore,

acquiring ground truth of in-body environments is extremely challenging making it

difficult to have accurate quantitative comparisons between methods.

When it comes to endoscopic 3D mapping, there is a big focus on computer-assisted

surgery. Soft-tissue morphology and motion information allows the registration of

multi-modal patient-specific data and to enhance the surgeons navigation capabil-

ities and to provide intelligent control of roboticized instruments [18, 118]. An

example of a laperacopic mapping is presented in Figure 2.9. Methods used in

endoscopic images usually focus on either the disparity or the stereo-triangulation
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Figure 2.9: (a) Principle of 3D surface reconstruction based on stereo vision.(b-c) stereo
image pair from a laparoscope (d) during robotic assisted surgery (e) Disparity image ob-
tained using the images in (b) (f) 3D motion of the surface in images (b) and (c) (g) Illus-
tration of parallax by overlay of the stereoscopic image. Adapted from [18]

stages [117]. Reconstruction errors vary greatly between classic methods usually

with big trade-offs between accuracy and speed [117]. More recently, some deep

learning methods have been translated to endoscopy reconstruction with promising

results [119, 120].

Colonoscopy environments present even more space constrains so most research

in this field focus on monocular reconstruction of standard colonoscopy videos

[121, 122, 123, 124, 19]. Supervised approaches remain challenging as the colono-

scope cannot easily integrate additional sensors without compromising flexibility

and patient comfort and still allowing to encompass channels for water, air and

instruments. This means that ground truth training data cannot be obtained using

standard equipment. Some studies try to circumvent this limitation with the use of

synthetic data based on a human CT colonography (CTC) scan [42, 19]. An ex-

ample of a pipeline for the generation this type of data is illustrated in Figure 2.10

[19].

Flexible stereo colonoscopes are relatively recent so the mapping of the colon sur-

face using stereo image is still unexplored.
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Figure 2.10: Illustration of a synthetic data generation pipeline: (a) surface mesh of colon
from computer tomography (CT); (b) illustration of the camera path and light source; (c)
depth maps generated along camera path. [19]

2.3 Conclusion
This review covers the main computer methods that aim to enhance traditional

colonoscopy procedures. Followed by the success of deep learning approaches in

most computer vision problems, polyp detection has exponentially improved in the

last years. Classification, detection and segmentation networks all report high per-

formances but direct comparison between architectures still remains difficult. Some

of the top performing methods in the public datasets are still unpublished and it is

common for published methods to evaluate on their own private data. Most of the

published clinical studies suffer from both problems: lack of clarity on the archi-

tecture and the use of private datasets. It is possible that, because of the relatively

limited amount of medical data available, bigger improvements are seen due to

data/training engineering rather than chosen architecture.

Progress in endoscopic mapping is coming at a substantially lower pace. The diffi-

culty to acquire large scale ground truth data hinders the ability to use deep learning

approaches. The problem is also more complex and demanding in nature. Map-

ping an environment is a multi-step problem with several challenges even in natural

images. This usually means that high performance methods are also computation-

ally expensive and with limited real-time use capabilities. All these problems are

exacerbated in a colonoscopy procedure. Large texture-less areas, specular high-

lights, blood and surgical tool occlusions make this environment a challenging one

to map. Furthermore, because most commercially available scopes are monocular,

scale ambiguity also needs to be accounted for. Stereo reconstruction is usually
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seen as a more accurate mapping method and it is more amply used in a range of

computer vision problems. As new stereo colonoscopes are released, stereo 3D

mapping becomes as valid option for colon mapping as it as been for laparoscopic

procedures.

The main challenges that we will be related to data constrains. Deep learning has

proven time after time its ability to accurately solve most computer vision problems

but most breakthroughs came after massive amounts of representative data were

made available. In the medical field, the data acquisition process is much more

limited and smaller in scale. Guaranteeing that a model trained in highly curated

dataset remain generalizable can be challenging. Clinical use also constrains the

model in terms of computer complexity and speed. Stereo matching of the colon

mucosa is particularly hard, it is not a rigid environment and the camera movements

can be fast an erratic. 3D mapping also suffer from severe computational and data

availability constrains.



Chapter 3

Automatic polyp segmentation using

convolution neural networks

Convolutional Neural networks (CNN) were traditionally applied in image classifi-

cation problems. More recently, CNNs were used for coarse inference by labelling

each pixel with the class of its enclosing object. This can be achieved with post-

processing by super-pixel projection, multi-scale approaches or patch-wise training.

Alternatively, Long et al. [79] proposed a fully convolution neural network (FCN)

learned end-to-end, where dense prediction is obtained with in-network deconvolu-

tion layers. We exploit the same principle of these networks for polyp segmentation.

This work was one of the first fully convolutional networks trained end-to-end to

segment polyps in colonoscopy images. It focus on transferring state-of-the-art

learning techniques used by general computer vison models to the medical domain.

This work was peer reviewed and published in [81] and [65].

3.1 CNN and FCN Basis
Regardless of the architecture, CNNs always integrate three basic components: con-

volution, activation function and pooling operation layers. They operate on local in-

puts, depending only on relative spatial coordinates. An example of of the effect of

convolution and activation operations on a colonoscopy image is depicted in Figure

3.1.

Considering xk
i, j as the input data vector at location (i, j) in layer k, the input of the
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Figure 3.1: The basic CNN operations on a single CNN neuron from the first layer of the
FCN-VGG with batch normalization. Image sequence left to right: input image, receptive
field, convolution results, normalized image, and ReLU activated image.

following layer, xk+1
i, j , is computed by

xk+1
i, j = f k

S (x
k
si+δi,s j+δ j

,0≤ δi,δ j ≤ w). (3.1)

where S is the stride or subsample factor and f k represents the type of operation

of the layer k. In classification CNNs, the network ends with one or more fully

connected layers that produce non-spatial outputs [79]. A loss function l compares

the prediction outputs of the last layer f K to the desired result y as:

l(xK,y) = ∑
i, j

l(xK
i, j,yi, j). (3.2)

Using the chain rule, the gradient of the loss is back-propagated throughout the

network and the parameters of all layers are updated via stochastic gradient descend

(SGD) [125].

Traditional CNN architectures, such as AlexNet [61] and VGG [126], are used for

classification problems, which mean that they take a fixed size input image and out-

put a single classification score for all the possible classes. To obtain pixel-wise
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segmentation, these networks need to be converted to fully convolutional networks.

A fully connected layer can be viewed as a convolution layer where the kernel has

the same dimensions as the input. By replacing these with convolutions, it is possi-

ble to convert traditional classification networks into FCNs that take inputs of any

size and output coarse classification maps. While the resulting maps are equivalent

to processing individual patches by the original network, the computational cost is

highly amortized by the inherent efficiency of convolution. Even though the output

maps can yield any size, these are typically reduced by subsampling within the net-

work [79]. To connect these coarse outputs to dense pixels, an interpolation strategy

needs to be used.

Convolution is a linear operation, and as such, it can be expressed in a matrix multi-

plication form. Assuming Ω as a map of size W ×H to be convoluted by the kernel

θ of size W ′×H ′ with a stride S, the convolution operation can be expressed as

vec(ψ) =Cvec(Ω). (3.3)

where vec(Ω) represents Ω flattened to a WH dimensional vector, vec(ψ) is a vector

with size D =
(W−W ′

S +1
)
×
(H−H ′

S +1
)

and C is a sparse matrix of size D×WH,

where the non-zero elements are elements of Ω. The vector vec(ψ) can be later

reshaped to a
(W−W ′

S +1
)
×
(H−H ′

S +1
)

convoluted map. During CNN training, the

loss ψl is backward passed to the lower level layers by convolution transpose

vec(Ωl) =CT vec(ψl). (3.4)

where Ωl and ψl have the same dimensions of Ω and ψ in the forward pass, and Ωl

connectivity pattern is compatible with C by construction [127].

If S > 1, convolution implements a subsample operation. Intuitively, transpose con-

volution is a way to upsample the input by a factor of S. Following this principle, by

simply reversing forward and backward pass operations, it is possible to implement

in-network upsampling. The transpose convolution layer, also known as deconvo-

lution layer, does not need to have a fixed filter (doing bilinear interpolation, for
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example) but can also be learned and adjusted during training. This provides very

fast and effective upsampling used to structure efficient FCNs, capable of achieving

state-of-the-art results in semantic segmentation [79].

SGD iteratively estimates the global gradient of the loss by using a limited set of

samples. Changes in distribution of the inputs hinders convergence, as the parame-

ters of each layer need to adapt to a new distribution. This slows down training by

demanding lower learning rates and careful parameter initialization. In deep net-

works, this effect is intensified because small changes in the parameters are greatly

amplified throughout the network, as the inputs of each layer are affected by param-

eters of all preceding layers [128].

To overcome this, we evaluate the incorporation of batch normalization into stan-

dard CNN architectures to compensate batch distribution changes. Batch normal-

ization layers perform in-network normalization by linearly transforming each train-

ing mini-batch to have zero mean and unit variance. This technique has proved to

yield improved results on classification tasks using considerable less training itera-

tions [128]. An example of the batch normalization process is illustrated in Figure

3.1.

3.2 Proposed architectures for polyp detection

We investigated several state-of-the-art convolution architectures and adapted them

through fine-tuning, for polyp segmentation. Specifically, we tested six different

architectures: AlexNet [61], GoogLeNet [129], VVG [126] and three version of the

ResNet architecture with 50, 101 and 152 layers of depth [130]. The AlexNet and

VGG are converted into FCNs (FCN-AlexNet and FCN-VGG) by discarding the

two fully connected layers and replacing them with 1×1 convolution layers with the

same 4096 dimensions of the fully connected layers. The final scoring layers were

also replaced with a 2D, 1× 1 convolution to produce the background and polyp

pixel classification maps as the output. The conversion of GoogLeNet and ResNets

into FCNs only requires the replacement of the scoring layers with a 2D convolu-

tion. We also increased the resolution of the output coarse map by discarding the
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Figure 3.2: Illustration of the proposed BN-FCN-VGG architecture with batch normaliza-
tion. The values on the top array represent the output size of each layer underneath. The
fully connected and scoring layers of the original VGG were removed. Grey coloured layers
were loaded from the original model while blue coloured layers were added or modified for
polyp segmentation.

final averaging layer. ResNets already incorporate batch normalization, while we

added a regularization operation between every convolution and activation layer for

the remaining networks, as illustrated in Figure 3.1. Every network is finalized with

a deconvolution layer with stride S = 32 and a kernel of size W ′ = H ′ = 64, re-

sponsible for upsampling the coarse output to a dense scoring map with the same

dimensions as the input. Even though CNNs outputs a coarse segmentation map,

a single deconvolution layer can accurately upsample blob-like structures like most

polyps. We verified that adding extra deconvolution layers from the finer levels of

the models did not improve the results. An example the proposed fully connected

version of VGG with batch normalization (BN-FCN-VGG) is illustrated in Figure

3.2.

3.3 Shape-from-Shading
The increased detection performance of CNNs by incorporating depth information

[79], motivated us to employ a shape-from-shading (SfS) technique [131] to extract

depth from colonoscopy images and include it in the formulation of our models.

SfS aims to recover the 3D shape of an object by analyzing the illumination vari-

ation across the image. Subsequently, SfS is suitable for approximating depth in

colonoscopy recordings with a monocular view without requiring stereo or multi-

view matching [132] and structure from motion estimation [133]. While limited
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(a) (b) (c)

Figure 3.3: SfS method employed. (a) image from the CVC-ClinicDB dataset; (b) depth
estimation from SfS; (c) 3D surface recovered from SfS depth.

to only relative depth, SfS does not require texture assumptions like shape-from-

texture [134] techniques and is useful for extracting geometric information easily

from existing clinical colonoscopy systems.

The majority of SfS approaches [131, 135, 136] assume a light source either co-

inciding with the optical center or infinitely far away from the scene. These con-

ditions are unrealistic in the case of colonoscopy even though the light source and

the camera are both at the tip of the instrument. This is because despite the small

distance between the camera and the light, the observed tissue is also very close and

highly dependent on small illumination changes. To overcome this limitation, we

use a method which approximates the position of the lightsource at the tip of the

endoscope and uses the position directly in the SfS problem formulation [137]. An

example of depth extraction from a single colonoscopy image can be seen in Figure

3.3.

3.4 Implementation and training details
Developed networks were optimized by SGD with a 0.99 momentum and all layers

were updated by back-propagation. Classes probabilities are calculated with soft-

max function and cross-entropy was used as the loss function. For GoogLeNet, the

two deeper loss function were discarded and only the last one was used for fine-

tuning. For FCN-Alexnet and FCN-VGG, the convolution filters were initialized

by copying weights from public available models trained on the PASCAL segmen-
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tation dataset. Because no trained segmentation models are publicly available, the

fully convolutional GoogLeNet (FCN-GoogLeNet) and the three fully convolution

ResNets (FCN-ResNet) were initialized by loading classification models trained on

the Imagenet dataset [59]. New convolution layers were zero-initialized and the

learning rate of scoring layers was increased by a factor of 10. We fine-tune the

networks with the highest fixed learning rate that did not cause loss divergence. For

FCN-GoogLeNet this corresponds to a learning rate of 10−12, while all other FCNs

were optimized with a learning rate of 10−10. Convergence was achieved after 30K

iterations for FCN-ResNet-51 and FCN-ResNet-101, 40K for FCN-GoogLeNet,

50K for FCN-VGG and FCN-ResNet-151 and 120K for FCN-AlexNet.

Images were resized to 500×500 and random flipping was used for data augmen-

tation during training. Non residual FCNs were trained with a random single image

per batch. All FCN-ResNets were trained with 224×224 patches randomly sampled

from the training images. This allowed to increase the batch size even with limited

memory resources. The same type of sampling was performed during training of the

batch normalization versions (BN-FCNs) of the non residual networks. Batch sizes

of 20 were used for BN-FCN-AlexNet, BN-FCN-GoogLeNet and FCN-ResNet-51.

Due to memory constrains, smaller batch sizes were used for other FCNs: 16 for

FCN-ResNet-101, 8 for FCN-ResNet-151 and 5 for BN-FCN-VGG. When training

networks with depth (D-FCN), the SfS values are concatenated to the RGB chan-

nels to create a new 4-channel input. A new channel is added to every first layer

convolution filter and it is initialized by averaging the values of the other filter di-

mensions. The learning rate of this layer is increased by a factor of 10. All models

were trained and tested using the Caffe [138] software library in a single NVIDIA

Tesla K40 GPU.

3.5 Experimental setup and Results

3.5.1 Datasets

We used the public datasets from the MICCAI 2015 polyp detection challenge [34].

For comparison purposes, we divided the dataset as suggested in the MICCAI chal-
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lenge guidelines: CVC-CLINIC and ASU-Mayo for training and ETIS-Larib for

testing. Furthermore, we also report results from a second public available dataset

(CVC-ColonDB) [139]. The datasets were obtained with different imaging systems

and contain manual segmentations of every detected polyp. More specifically, we

used the following images for training (fine-tuning) and testing:

• CVC-CLINIC: 612 SD training frames with at least one polyp each;

• ETIS-Larib: 196 HD testing frames with at least one polyp each;

• ASU-Mayo: 36 small SD and HD videos sequences, divided into training

frames with and without polyps;

• CVC-ColonDB: 379 testing frames from 15 different colonoscopy sequences

with at least one polyp each.

In total, the MICCAI challenge training data has 19514 frames from CVC-CLINIC

and ASU-Mayo datasets. However, only 4664 of these corresponds to images with

polyps. We verified that networks trained with the full dataset performed substan-

tially worst.Because of this, we fine-tuned all proposed FCNs with only polyp im-

ages.

We also created an independent dataset using 17 complete colonoscopy withdrawal

videos, previously unseen by the CNN, containing 83 unique polyps consisting

of 83,716 frames (14,634 polyp and 69,082 non-polyp) using Olympus EVIS-

LUCERA CV290(SL) processors and colonoscopes. White light frames were man-

ually annotated by drawing bounding boxes around polyps. Low quality frames

(blurred/indistinguishable image) were excluded.

3.5.2 Evaluation metrics

The developed FCNs were formulated to produce dense pixel-wise polyp segmen-

tations. As such, we report results using three common segmentation evaluation

metrics: mean pixel precision, mean pixel recall and intersection over union (IU).

If a pixel of polyp is correctly classified it is counted as a true positive (TP). Every

pixels segmented as polyp that fall outside of a polyp mask counts as a false positive
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(FP). Finally, Every polyp pixel that has not been detected counts as a false negative

(FN). The evaluation metrics are calculated according Equation 3.5.

Prec = T P
T P+FP Rec = T P

T P+FN IU = T P
T P+FP+FN . (3.5)

Since, in the MICCAI challenge results are reported in terms of polyp detection, we

also evaluate the polyp detection rate using the metrics advocated by the challenge

directives [34]; detection precision and recall. If a segmented blob falls within the

polyp mask it is counted as a TP. If the detected blob falls outside the ground truth

mask it is a FP. Every polyp in the image that has not been detected counts as a FN.

Only one TP is considered for polyp, no matter how many detections fall within

the polyp mask. Detection precision and detection are calculated with the same

formulas of Equation 3.5. Because our video dataset also contains polyp negative

frames we evaluate the true negatives (TN) by computing specificity according to

Equation 3.6

speci f icity = T N
T N+FP (3.6)

3.5.3 Results from RGB data

We first train every FCN using only RGB data and compare their performance on

both testing datasets. Table 3.1 presents the segmentation and detection results for

all proposed network architectures and Figure 3.4 illustrates representative exam-

ples of polyp segmentation. FCN-ResNet-152 and FCN-ResNet-101 proved to be

the best polyp detectors achieving the highest recalls in both databases. In some sit-

uations (third row in Figure 3.4), FCN-ResNet-152 was the only network capable of

correctly detecting the polyp, even with limited segmentation accuracy. Both deep

architectures (FCN-ResNet-101, FCN-ResNet-152) proved to be able to learn com-

plex filters capable of 90%detection recall in the testing datasets. FCN-ResNet-50

resulted in less accurate detections than its deeper counterparts, with approximately

10% lower detection recall. These observations indicate that, while more than 50

layers are essential in handling the high complexity of detecting polyps of various
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sizes, the addition of more layers in FCN-ResNet-152 does not hugely improve the

detection performance.
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Table 3.1: Segmentation and detection precision (prec) and recall (rec) in % obtained by
the proposed FCNs. Mean intersection over union (IU) is also presented for segmentation.
The best result for each metric is highlighted

ETIS-Larib CVC-ColonDB
Segmentation Detection Segmentation Detection

Prec Rec IU Prec Rec Prec Prec IU Prec Rec
FCN-AlexNet 27.87 35.54 15.7 44.08 63.78 40.3 20.71 15.77 45.29 54.68

FCN-GoogLeNet 25.83 29.82 12.29 41.85 62.76 37.46 12.93 12.71 42.26 45.25
FCN-VGG 70.23 54.2 44.06 73.61 86.31 76.06 60.46 54.01 79.57 86.01

FCN-ResNet-50 55.75 23.43 19.72 73.84 76.53 67.76 25.64 22.74 82.89 82.38
FCN-ResNet-101 63.26 53.88 41.35 75.32 91.66 73.85 50.73 46.23 83.70 88.20
FCN-ResNet-152 65.26 38.24 33.19 79.42 89.75 72.85 50.72 43.28 82.08 93.27

In the non-residual architectures, FCN-VGG outperforms the other FCNs by achiev-

ing detection recalls of 86% in both datasets. The simpler FCN-AlexNet success-

fully detected 63.78% of the ETIS-Larib polyps, and 54.68% of the CVC-ColonDB,

and resulted in a considerable amount of false positives, as exemplified by the sec-

ond and third segmentations of Figure 3.4. Finally, the FCN-GoogLeNet produced

the worst detection performance of all networks studied. Although, GoogLeNet is

a deeper architecture than the other two, this does not necessarily translate to better

inference ability, as the network is notoriously hard to optimize.

In terms of the segmentation results, FCN-VGG outperformed all other networks

with an IU of 44.06% and 54.01% for ETIS-Larib and CVC-ColonDB datasets,

respectively. Subsequently, even though FCN-VGG detects a smaller number of

polyps, the overall quality of the segmentation it provides is superior to other net-

works. An example of this is depicted in the second polyp of Figure 3.4. Sim-

ilar levels of segmentation quality were achieved by FCN-ResNet-101. Finally,

similarly to the detection results, FCN-AlexNet and FCN-GoogLeNet achieved the

worst performance in segmenting the polyps.

As far as we know, our method was the first to produce dense polyp segmentations,

which only allow comparison with other algorithms with the use of detection met-

rics. The current state of the art was set by the top deep learning method in the

2015 MICCAI polyp detection challenge (OUS), which achieved 73.3% detection

precision and 69.2% recall in the ETIS-Larib dataset [34]. As seen in Table 3.1,

four of our models (FCN-VGG and all three FCN-ResNets) surpass this results,
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Figure 3.5: Examples of successful detections by the FCN-ResNet-101 on video data.

with improvements in precision and increases in recall as high as 20%. The OUS

methodology was not made publicly available yet, so direct comparison is not pos-

sible. However, the huge difference in accuracy shows how important proven CNN

architectures and a good initialization are to achieved a better solution.

3.5.4 Results from video data

To evaluate the generability of our model we create a testing set consisting of half

of our video procedures with 24,596 frames (4,804 polyp and 19,792 non-polyp).

We evaluate FCN-ResNet-101 trained on MICCAI data and tested on our previ-

ously unseen colonoscopy procedures. It achieved a per-frame recall of 76.6% and

specificity of 78.9%. Examples of detections on this data are presented in Figure

3.5. The performance is substantially lower than the one on the MICCAI testing

set but by fine-tuning the CNN using polyp positive frames from our video training

dataset recall improved to 84.5% and specificity to 92.5%. This indicates that the

model still struggles to generalize between datasets, specially if they were acquired

with different imaging systems and protocols.

3.5.5 Adding batch normalization

Batch normalization is not implemented in the original AlexNet, VGG and

GoogLeNet. We investigate the influence of adding batch normalization in these

FCNs and list the results in Table 3.2. During training of the batch-normalized

(BN-FCNs) versions, convergence was achieved after 30K iterations for all BN-

FCNs. Due to memory limitations, relatively small batch sizes were used. BN-

FCN-AlexNet resulted in a slight increase in IU segmentation and detection re-

call for ETIS-Larib, while in CVC-ColonDB, every single evaluation metric was
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Figure 3.6: Segmentation comparison obtained by the three non-residual architectures with
and without batch normalization. FCN-VGG results are best viewed in colour electronically
the detection is very small.

Table 3.2: Segmentation and detection precision (prec) and recall (rec) in % obtained by
the non residual FCNs trained with batch normalization. Mean intersection over union (IU)
is also presented for segmentation. Metrics improved by adding BN are highlighted in bold

ETIS-Larib CVC-ColonDB
Segmentation Detection Segmentation Detection

Prec Rec IU Prec Rec Prec Rec IU Prec Rec
BN-FCN-AlexNet 30.05 29.07 17.41 38.95 62.76 46.22 28.78 21.19 43.69 80.87

BN-FCN-GoogLeNet 49.36 23.85 20.36 53.96 63.10 63.87 25.92 23.04 62.56 75.99
BN-FCN-VGG 56.87 66.59 42.32 56.24 94.01 66.8 61.3 47.18 61.57 95.16

improved, especially for detection, where the recall increased by more than 25%.

Similar improvements in segmentation IU and detection accuracy, are observed with

BN-FCN-GoogLeNet for both datasets. Examples of improved segmentations are

illustrated in Figure 3.6 for all three non-residual networks. Batch normalization en-

abled BN-FCN-VGG to increase the amount of polyps detected, with recalls higher

than 94% for both datasets. However, this was accompanied with an decrease in

precision. The third row in Figure 3.6 shows an example of a polyp being misde-

tected without batch normalization (FCN-VGG) while being successfully recovered

in the batch-normalized version (BN-FCN-VGG).
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3.5.6 Results from RGB-D data

To evaluate the addition of SfS-extracted depth, as an additional feature, we re-

stricted ourselves to the three architectures that achieved the best detection and seg-

mentation results with RGB data; FCN-VGG, FCN-ResNet-101 and FCN-ResNet-

152. The results after the inclusion of depth information are listed in Table 3.3.

The addition of depth information allowed D-FCN-VGG to perform slightly bet-

ter than its RGB counterpart. Segmentation IU and detection recall improved ap-

proximately by 2% for both datasets. Similar increases were verified with D-FCN-

ResNet-101, elevating its detection recall to more than 95% for the ETIS-Larib.

Fig 3.7 illustrates three examples where depth information allowed the networks to

detect a polyp that would otherwise miss (D-FCN-VGG, D-FCN-ResNets-101) or

improve segmentation accuracy (D-FCN-ResNets-152).

FCN-ResNet-152 has comparable detection performance with and without depth

Figure 3.7: Comparison between segmentations obtained by the three top-performing ar-
chitectures trained with and without depth.

Table 3.3: Segmentation and detection precision (prec) and recall (rec) in % obtained by
the three FCNs with the best performance trained with RGB-D data (D-FCNs). Mean in-
tersection over union (IU) is also presented for segmentation. Metrics improved by adding
depth information are highlighted in bold

ETIS-Larib CVC-ColonDB
Segmentation Detection Segmentation Detection

Prec Rec IU Prec Rec Prec Rec IU Prec Rec
D-FCN-VGG 68.68 62.16 47.78 73.32 88.01 74.94 68.02 56.95 76.85 91.03

D-FCN-ResNet-101 55.63 61.11 40.99 70.62 95.83 74.31 58.15 49.65 83.17 90.47
D-FCN-ResNet-152 67.66 39.78 33.77 77.95 90.2 71.16 47.95 41.32 80.78 92.5
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Table 3.4: Average inference time in milliseconds (ms) for a 500× 500 image. If appli-
cable, average inference time is shown , without batch normalization (no BN), with batch
normalization (BN) and with the inclusion of depth (Depth)

Average Inference Speed (ms)
Networks no BN BN Depth

FCN-AlexNet 51 136 -
FCN-GoogLeNet 60 193 -

FCN-VGG 295 412 536
FCN-ResNet-51 - 164 -

FCN-ResNet-101 - 206 265
FCN-ResNet-152 - 319 387

data. Alternative ways to incorporate depth information into the models might fa-

cilitate the learning of more meaningful RGB-D feature extractors.

3.5.7 Computation speed

The inference speed of each network highly depends of the amount of learned pa-

rameters and the number of layers. Table 3.4 lists the average time required for each

FCN to segment a single 500×500 image. The addition of batch normalization and

the use of depth features slows down inference, as more operations are required to

produce the final segmentation maps. The VGG architecture has the highest num-

ber of neurons, which results in the slowest average inference speed of all networks.

On the other end, FCN-AlexNet has the fastest average inference both with (136ms)

and without (51ms) batch normalization.

3.6 Conclusion
We have presented a deep learning framework for automatically detecting and seg-

menting polyps in colonoscopy images. This is achieved by taking advantage of

very rich representations available in CNNs trained on large databases which we

fine-tune to perform polyp detection and adapt them, by converting them to FCNs.

We compare the networks’ ability to accurately detect and segment polyp structures

in experiments on publicly available datasets with annotated ground truth. Obtained

results suggest that the two deepest residual architectures (ResNet-101, ResNet-

152) were able to cope with the complexity of polyp structures and achieve the best
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detection results. On the other hand, VGG achieved a better overall segmentation

output. These three networks achieved detection recall rates around 90% both in

the ETIS-Larib and CVC-ColonDB, considerably surpassing the state-of-the-art in

polyp detection. We also introduce relative depth information, derived from SfS as

an additional input channel. Results show that including depth can improve polyp

representation and lead to increased detection rates and segmentation accuracy.



Chapter 4

Stereo depth estimation with deep

feature matching

Other than human miss detection, failure to inspect portion of the colonic wall is the

biggest cause of miss polyps. A 3D map of the surface visualized during the proce-

dure would provide important feedback to operator and allowing them to minimize

unexamined areas. Moreover, a CNN based 3D reconstruction algorithm would

allow the incorporation of the polyp detection work described in the previous chap-

ter, creating a unified, multi purpose artificial intelligence system for endoscopic

navigation.

The colon creates a particularly hard environment for stereo reconstruction, because

it it presents non-rigid and largely uniform looking surfaces. Because of this, we

focus our research on the first and most important steps in stereo reconstruction:

stereo matching.

Established stereo matching methods typically use similarity functions between

handcrafted representations of small patches around the pixels [140]. Alternatively,

CNNs can learn complex, high dimensional feature extractors that allow a more

robust patch comparison [111].

Some of the most accurate stereo algorithms proposed in recent years employ CNNs

to score patches similarity [141, 111, 112, 142, 17]. Even though these methods

proceed with different approaches, every model starts with a siamese architecture

that processes the left and the right stereo images. While subsequent layers may
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allow more complex correlation inference or spatial regularization of the cost vol-

ume, the matching is still, in essence, based on the features extracted by the siamese

branches. As a consequence, the architecture of the siamese CNN plays a crucial

role in the quality of the stereo matching, much like the role of a traditional fea-

ture extractors. We therefore focus on enhancing the underlying siamese network

in order to improve performance.

In this chapter we highlight how the stereo matching problem presents particular

problems to convolution networks and we propose simple but effective ways to

minimize them. We propose the use of pooling and deconvolution operations in

the siamease architecture to allow the extraction of features with a wider receptive

field around the target pixels. The intuition is that, a wider context view allows

the feature extraction of more visual cues, allowing better point correspondence.

Furthermore, we study the effect of a simple feature space transformation that sig-

nificantly simplifies the learning problem, allowing the CNNs to learn end-to-end

correlation with a very shallow architecture. We also propose a new feature space

that simplifies the stereo matching problem from a CNN point of view and improves

performance. This work was peer reviewed and published in [20].

4.1 Siamese network architecture

We construct our fully supervised network by layering sequential blocks of 2D con-

volutions, batch normalization and a rectifier linear unit (ReLU). Just like most ar-

chitectures, we use layers with 64 neurons of 3×3 convolutions and the parameters

between branches are shared. The last layers are added without batch normalization

and ReLU operations.

Generally speaking, wider patches allow the extraction of more visual cues and

help more accurate matching, especially in textureless regions. The area around

the target pixel that is considered in the matching process depends on the global

receptive field of the CNN architecture. If we denote the input of the pth layer

indexed by the coordinates i, j as xp(i, j), then a network with n layers will output

y(i, j) = xn(i, j). Mathematically, we can define the global receptive field as the
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Figure 4.1: Representation of our 7 layered stereo matching CNN. Patches extracted from
the left and right stereo images are processed in the blue and orange branches, respectively.
During training, the width of the right patch depends of the max disparity (D) considered.
After feature extraction with the siamease architecture, the features are aggregated accord-
ing to their relative displacement. The correlation between features for each disparity is
computed by a simple two layer correlation architecture. The final disparity volume repre-
sents a correlation value of each possible integer disparity between zero and D for every left
patch pixel.

range of pixels in x0 that affects each y(i, j). Intuitively, the global receptive field is

the size of the region that a CNN uses towards making a single prediction.

More convolution layers and bigger sized filters allow small increases in the global

receptive field but cause an exponential increase in computation time and mem-

ory requirements. A common practice in classification CNNs is the use of strided

pooling to downsample feature maps withing the network, allowing for much wider

global receptive fields [141]. Pooling operations have also been reported to provide

translation invariance to CNN models [141]. However, the properties that make

pooling useful in classification tasks are not desirable for stereo matching, so most

stereo algorithms avoid this operation. The loss of detail from feature downsam-

pling makes it harder to recognize very small differences, something crucial for

pixel-level matching. We address this problem by using transpose convolution (de-

convolution) operations.
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4.2 Correlation layer

Several stereo matching CNNs use inner product as a correlation metric between

features vectors extracted from the siamease branches [112, 111, 141]. The opera-

tion is computationally efficient, fast and differentiable, which allows backpropaga-

tion during training. In these cases, the CNN learns feature extractors that maximize

the inner product between two corresponding points. While this provides a fast and

effective way to compute correlation, it would be preferable to allow the network

to learn a correlation that best fits the stereo data. Note that the inner product only

measures one direction/component of similarity between vectors. Whereas the net-

work could learn more complex relationships.

Recent methods choose to concatenate the output from the siamese network along

the feature dimension and follow it with more convolution layers [111, 142, 141].

To a certain extent, this allows the CNN to learn how to correlate matching points,

but the maximum disparity that the network is able to find is intrinsically related to

the global receptive field of the layers stacked after the siamese portion of the CNN.

Lets consider the case where we want to find the disparity map for a left stereo

image Il with W ×H dimensions. Considering D, the maximum disparity possi-

ble between the stereo pair, correlation needs to be computed with all pixels within

a D+ 1 range in the right stereo image Ir. By using a siamease network with a

θ dimensional output its possible to extract two feature vectors with W ×H × θ

dimensions. To learn how to match pixels for D+ 1 possible disparities from the

concatenated volume, the network needs to process 2θ values in its third dimen-

sion and to account for a range of D+ 1 pixels in the input second dimension. In

other words, the correlation layers would need to start with 2θ neurons, and their

global receptive field would need to be equal or superior to D+1 in the image width

dimension. Using the common approach where we stack n layers of w×w convolu-

tion blocks the global receptive field of a network is equal to n× (w−1)+1. In the

KITTI dataset [143], for example, where D = 256, it would take at least 128 layers

of 3× 3 convolutions for a network to have a global receptive field wide enough

to match 256 pixels apart without downsampling the feature space. This is not
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only challenging from a computational point of view but it greatly complicates the

learning process. Beyond learning how to correlate features of matching points, the

model would also need to correspond feature positions with the intended disparity.

We use a feature space transformation that greatly simplifies the learning problem

of a non-linear correlation metric through convolutional layers, needing as little as

two convolution layers to compute a disparity map for any size D.

Defining the θ -dimensional feature vectors computed from Il and Ir as the ψl and

ψr, respectively, we construct a new feature space Ψ as:

Ψ(i, j) =| [| ψl(i, j)ψr(i, j−d) |],∀d ∈ N0 | 0 6 d 6 D | (4.1)

where | . | represents a concatenation operation. Note that we are still concate-

nating vectors along the feature dimension, but we replicate the left features and

pair them with right features of every possible disparity. The new feature space Ψ

has the dimensions WH×D+1× 2θ where, for all (i, j) pixels, there is a paired

2θ -dimensional feature vector for all D+1 possible disparities. This simple trans-

formation radically changes what kind of information convolution filters receive.

The proposed feature space transformation is illustrated in Figure 4.2

Lets consider applying a single 1× 1 convolution layer that outputs a single value

from a 2θ dimensional input to the new feature space Ψ. Note that a single value

would be computed for D+ 1 disparities for all (i, j) pixels, using only the cor-

responding right and left feature pairing as input. This way, the correlation layer

only needs to learn how to correlate two concatenated θ -dimensional vectors, inde-

pendently of their original position, considerably simplifying the learning problem.

This layer would output a WH×D+1× 1 map that can be easily transformed to

the intended disparity volume with a W ×H ×D+1 shape. Beyond this, in this

feature space, filters of size 1×z allow the network to learn a correlation metric that

accounts for z neighbor disparity pairs, creating the opportunity for a more robust

disparity correlation. Finally, because the filters learned during training always cor-

relate 2θ -dimensional feature pairs, Ψ can be rebuilt for a variable number of max

disparities without needing to retrain the model.
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Figure 4.2: Comparison between standard feature concatenation and a built feature space.
The left and right Θ-dimensional features are computed by the siamese architecture. Similar
color squares represent point correspondences between the stereo image pair. Differences
in tone are just meant to represent small variations between both images. Black squares
represent zero padding.

The idea of aligning features is similar to the one presented by [17]. However,

this is followed with a second big 3D network that is responsible to learn not only a

correlation metric, but to deep regularize the disparity map. While this is an obvious

advantage for the global performance of a stereo matching network, it would make

it harder to exclusively evaluate the quality of the features extracted. Our feature

space transformation makes it that, each disparity is processed individually by the

same learned correlation layer, making it that only the features learned from the

stereo pair are taken into consideration.

In our experimental results, we compare the performance of the cost volumes com-

puted with inner product and with our correlation layer. We use the simplest archi-

tecture that allows non-linear logical operations [144]. For our correlation layer, We

use a single activated convolutional hidden layer with 2θ neurons and 1×3 filters,

and a output convolutional layer with a singular output channel also with a 1× 3

filter. A smaller filter wound not allow the correlation layer to take into account

neighborhood information and bigger filters did not improved the results.
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4.3 Training and testing details
We train our models with randomly extracted small patches from the left stereo im-

age and the same coordinate patch from the right image extended by the maximum

disparity under consideration. This allow to diversely sample training batches while

being memory efficient. We treat each disparity value as a mutually exclusive clas-

sification problem. The values outputted from the correlation step are normalized

using a softmax function and the network is trained my minimizing cross-entropy

loss. All parameters are trained with stochastic gradient descent and gradients are

backpropagated using the standard Adam optimization [145].

During testing, memory constrains us to compute disparity maps for high resolution

images with big max displacements in a single network pass. Instead of processing

subsections of the image individually, we follow the same procedure suggested by

[112]. First, we extract the feature representation for all pixels of the stereo image

pair with the siamese architecture. Then in the correlation step, the same feature

values can be reused for computation of disparity maps of multiple pixels. This

results in significant increases in the inference speed. The final disparity values are

chosen with a winner-take-all approach.

4.4 Experimental evaluation
We train and evaluate our models using both the KITTI 2012 [143] and KITTI 2015

[146] datasets. Both are composed of rectified natural images captured by a stereo

camera. KITTI 2012 consists only of static environments while moving objects are

present in KITTI 2015. Just like most methods [111, 112, 17, 142], we use the

sparse available labels from non-occluded pixels for training.

We evaluate our methodology by training three different siamese architectures: S4,

S7 and S9, with 4, 7 and 9 convolution layers and with 1, 2 and 3 max pooling

layers, respectively. We also compare all models trained with inner product and with

the proposed correlation architecture. We verified no performance improvement by

adding skip connections, so we only present the results with non-skip architectures.

All parameters are randomly initialized with a normalized Gaussian distribution and
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input images are normalized to have zero mean and unit standard deviation. Every

CNN is trained for 75K iterations with a 1e−3 starting learning rate. Training is

done with randomly extracted patches from left image with sizes 10× 10 for S4,

28× 28 for S7 and 56× 56 for S9. We use the biggest batch size that our system

allowed for each model. For CNNs trained with inner product, this translates to

batches of 128, 32 and 20 for S4,S7 and S9, respectively, and batches of 128, 20 and

8 for the same models trained with out correlation architecture. All models were

implemented in Tensorflow [147] and ran on a NVIDIA Titax-X GPU.

4.4.1 KITTI 2012

KITTI 2012 datasets consists of 194 image pairs for training and 195 for testing.

Because no ground truth is given for the testing images, and multiple online sub-

missions are not allowed, we evaluate our models by spliting the training data in a

training and validation sets. As in the work developed by [112], we randomly use

160 image pairs for training and 34 for testing. Even tough we do not guarantee

the same split as [112], we argue that the difference in performance is big enough

to prove the importance in widening the receptive field of the Siamese network,

independently of the training/validation set split. Again, our main objective is to

study and improve the siamease architecture that initializes most recent CNN stereo

matching systems, so we do not implement an end-to-end system capable of com-

peting with current state-of-the-art systems. The performance of our models in the

validation set is shown in Table 4.1.

When we use the inner product for feature correlation, a direct comparison with

the same depth architectures from [112] allow us to verify the effect of pooling

and deconvolution layers. All our models outperform the corresponding networks

proposed by [112], which shows the benefit of our pooling/deconvolution approach.

Despite the overall increase in performance, Table 4.1 shows that there is a limit to

the benefit of increasing the receptive field trough downsampling pooling layers.

While the 2-pixel is reduced substantially from S4 to S7, the extra pooling layers in

S9 did not greatly decreased the matching error.

Table 4.1 also shows that slightly better matching was achieved by learning corre-
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Table 4.1: Comparison of several error metrics in % of our three different siamese architec-
tures trained with inner product (inner prod) and with our correlation architecture (learned)
on the KITTI 2012 validation set

>2 pixel >3 pixel >5 pixel
Runtime (s)

Siamese CNN Correlation Non-Occ All Non-Occ All Non-Occ All

S4
inner prod 12.42 14.18 11.38 13.16 9.98 11.76 1.15

learned 11.27 13.05 10.39 12.13 9.08 10.82 5.25

S7
inner prod 7.57 9.45 6.72 8.61 5.64 7.53 1.15

learned 6.65 8.23 5.84 7.58 4.80 6.48 5.27

S9
inner prod 7.47 9.34 6.50 8.36 5.31 7.17 1.16

learned 7.57 10.29 6.59 9.05 5.34 7.80 5.28

Figure 4.3: Examples of non-regularized disparities (middle) and errors (right) of KITTI
2012 validation images (left) computed with the S7 architecture and learned correlation.

lations from the transformed feature space. Matching improvements are present in

S4 and S7 when the correlation layer is used, but a slightly worst performance is

achieved in S9. This indicates that the loss of detail from successive pooling might

hinder the ability of the network to learn a good correlation function. The best

results were achieved with S7, where the receptive field is big enough for robust

matching, but the lost of detail is not enough to stop the network from computing

an effective correlation. Figure 4.3 shows that, even without spatial regularization,

our architecture is able to smoothly match low detail regions while maintaining

sharp edges in cars and trees. Because the focus of our work is the evaluation of the

feature extraction, we did not invest a huge amount of time in performance improve-

ments. We used a slow naive implementation of the feature space transformation

that is significantly slower than the inner product. However, this operation can still

be greatly optimized with a GPU implementation.
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Table 4.2: Comparison of several error metrics in % of our three different siamese architec-
tures trained with inner product (inner prod) and with our correlation architecture (learned)
on the KITTI 2015 validation set

>2 pixel >3 pixel >5 pixel
Runtime (s)

Siamese CNN Correlation Non-Occ All Non-Occ All Non-Occ All

S4
inner prod 11.19 12.68 10.01 11.50 8.57 10.05 1.15

learned 8.26 10.72 7.10 9.71 6.82 8.40 5.25

S7
inner prod 7.80 9.36 6.81 8.37 5.75 7.30 1.15

learned 6.79 8.21 5.92 7.30 4.92 6.24 5.27

S9
inner prod 6.89 8.47 6.02 7.61 5.18 6.74 1.16

learned 7.47 8.96 6.42 7.88 5.41 6.82 5.28

4.4.2 KITTI 2015

KITTI 2015 has 200 image pairs for training and for testing. Again, just like [112],

we randomly split the training set in 160 images for training and 40 for validation.

This allows a better direct comparison with their method.

A similar analysis to the one made for KITTI 2012 is valid for the KITTI 2015

results. Bigger receptive fields allow lower matching errors for features learned

with the inner-product implementation. When learning a correlation, a compromise

between a wider global receptive field with less loss of detail is found in the S7

architecture. In Figure 4.4, we continue to predict big smooth disparities in low

texture regions, even without any post-processing. This shows that wider global

receptive fields allow a much more effective correlation computation. Furthermore,

even with the downsampling operation within the networks, features capable of

representing small structures like traffic signs, fences and trees can be successfully

extracted. Stacking further layers should easily allow spatial regularization to be

learned without significant increase in computation cost, since the concatenation

and reshaping operations of the feature space transformation are the bottleneck of

the method.

4.4.3 Comparisons with other methods

As stated before, we do no propose a full stereo pipeline for stereo matching. Our

main objective is to study and improve a crucial part of most of the current CNN

stereo matching models: the siamease architecture. Because of this, we compare our

work with other non-spatial regularized architectures. This results are presented in
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Figure 4.4: Examples of non-regularized disparities (middle) and errors (right) of KITTI
2015 validation images (left) computed with the S7 architecture and learned correlation.

Table 4.3: Comparison of the 2 pixel % error of different matching siamease architectures
without post-processing on the 2012 and 2015 KITTI validation set

Method
KITTI 2012 KITTI 2015

Non-Occ All Non-Occ All
MC-CNN-acrt 15.02 16.92 15.20 16.83
MC-CNN-fast 17.72 19.56 18.47 20.04

Luo et al. 10.87 12.86 9.96 11.67
S9 + inner product 7.57 10.29 6.89 8.47

S7 + correlation 6.65 8.23 6.79 8.21

Table 5.3.

Table 5.3 shows that when compared with other non regularized Siamese architec-

tures, our wider models have a significantly lower 2-pixel error in both 2012 and

2015 KITTI datasets. Furthermore, the proposed space transformation allows S7

to learn a shallow correlation layer which allows it to outperform all other siamese

architectures.

The results reported do not guarantee that replacing the siamease architectures of

more complex models, such as the one proposed by [17], will improve matching

performance, but they show promising potential even without spatial regularization.

If nothing else, our models, just like the ones proposed by [112], provide a simple,

fast and easy to train approach, but much more accurate results. Because of this,

we only evaluate medical data on the next chapter, where a end-to-end method is

proposed building on the concepts presented here.
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4.5 Conclusion
Similar to so many areas in computing, deep learning has allowed us to move at

an incredible speed towards a robust solution for stereo matching. As computation

power increases, there is a natural tendency to move to bigger and more complex

CNN models. In this work we demonstrated that big improvements are still possible

by small, problem-specific adaptations that simplify the learning problem. While

powerful, manual feature representation matching is severely undercut by slow pro-

cessing times and memory limitations, specially for large HD images such as the

ones used in the medical field. This can be minimized by incorporating deep feature

representations into stereo matching models trained end-to-end.



Chapter 5

Spatially consistent disparity maps

with hierarchically aggregated

pyramid networks

In this chapter we expand on the concepts presented in Chapter 4 to develop a

model capable of incorporating context when computing disparity maps. In this

chapter we propose a model trained end-to-end capable of incorporating context

into its decision. We use hourglass structures that take advantage of the same wider

receptive field principle introduced in chapter 4. Once again we propose simple

but effective techniques, such as hierarchical feature aggregation and scale aware

disparity regression, that adapt the particular problem of stereo matching to the

limitations of CNN learning. This work was peer reviewed and published in [148].

5.1 Hierarchically aggregated pyramid network
Here we focus on creating an accurate, fast and memory efficient model for stereo

matching. One of the fastest ways to create a cost volume is to simply concatenate

the feature representation of both stereo images. In this case, if we solely focus

on the problem of finding spatial displacements between corresponding points, the

ensuing network would need to at least be able to capture information in a domain

wide enough to compare high disparity pixels. In other words, the network would

need an effective receptive field equal or larger than the biggest disparity considered.
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Due to computational complexity restrictions, the most common way to increase a

network receptive field is the use of downsampling operations, which in turn, can

cause some loss of detail during pixel-level matching. A similar argument can be

made for feature extraction, where the best accuracy is achieved with a compromise

between the size of the receptive field and the loss of fine detail, as previously shown

in Brandao et al. [149].

We propose a fast and memory efficient approach that avoids the use of correla-

tion layers or manually built cost volumes. Our hierarchically aggregated pyramid

network (HAPNet), illustrated in Figure 5.1, allows a theoretical receptive field big

enough to infer big disparities without losing too much fine detail information. The

parameters of the proposed HAPNet are presented in Table 5.1.

5.1.1 Multi-resolution feature extraction

The first part of the HAPNet model is responsible for extracting deep feature de-

scriptors of the stereo image pair. High dimensional representations are more robust

to appearance ambiguities and can incorporate local context [17]. While conven-

tionally used for wide-baseline matching, with modern CNNs, it is now possible to

incorporate such robustness in dense matching.

Our feature extractor is a Siamese network built by stacking three sequential pairs

of convolution layers. Each pair starts with a 2-strided convolution, halving the

spatial resolution and doubling the feature dimensionality. This allows to extract a

deep feature representation downsampled by three different factors: 8, 4 and 2. All

convolutions use 3×3 filters, as no significant improvement was observed in exper-

iments with using bigger filters. The weights of both branches are shared to more

effectively learn corresponding features. A detailed description of this architecture

is presented in Table 5.1 and the accompanying Figure 5.1.
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5.1.2 Hierarchical feature aggregation

If the ability to find point correspondences and compute their distance can be en-

coded by a fixed number of stacked convolution layers then, in theory, this ability is

only limited by the effective receptive field of those stacked layers. Considering the

range of disparities expected in most real cases, the required receptive field can only

be achieved by using several downsample operations through the network. As men-

tioned before, downsampled features tend to lose more detail, so most approaches

choose to handle the receptive field requirement by using a correlation layer or by

manually aligning features [114].

We avoid the use of correlation layers or manually built cost volumes by perform-

ing a coarse to fine concatenation of the feature representations of the stereo pair.

Our pyramid network encodes point correspondences at multiple resolutions, pro-

gressing from coarse to finer prediction. This allow us to have a receptive field big

enough to encode large displacements in the lower resolutions and to encode finer

correspondences in the higher ones. The full architecture is illustrated in Figure 5.1

with a more detailed description of the parameters in Table 5.1.

Our pyramid network starts with the concatenation of the left and right features ex-

tracted by the last layer of the Siamese network. This is used as the input to a small

encoder-decoder style network, inspired by the 3D hourglass network proposed by

Chang et al. [116]. This network is responsible for encoding point correspondences

as well as context information and is described in more detail in section 3.3. The

output of the 2D hourglass network is then up-sampled by a deconvolution layer and

concatenated with the next higher resolution representations of the left and right im-

ages. A new convolution layer performs dimensionality reduction before a new 2D

hourglass network is employed to encode point correspondences in the new reso-

lution. The process is repeated until the original resolution is reached, where the

original left and right images are used for the last feature concatenation. The out-

put of each 2D hourglass network is also used to regress a disparity map in each

different resolution level. With the proposed architecture, low resolution encoded

correspondences are propagated to the next level of the pyramid, guarantying that
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large displacements can be detected even as the effective receptive field decreases

in the higher resolutions.

5.1.3 2D hourglass Network

While computationally efficient, simple feature concatenation does not implicitly

encode spatial correspondences like a correlation layer or a manually built cost

volume. Because of this, we introduce small encoder-decoder networks to encode

stereo matches.

Our 2D hourglass network consists of single 3× 3 convolution layers, with two

levels of downsampling, followed by two deconvolution layers with residual con-

nections [116]. One important aspect is that the network maintains the same feature

dimensionality and resolution as the input. The full description of the 2D hourglass

block is presented in Table 5.1.

Chang et al. [116] proposed a 3D version of this network to repeatedly process the

cost volume in a top-down/bottom-up manner, improving the use of global context

information. In our model, the hourglass is not only responsible for improving

context incorporation but, more importantly, to encode disparity correspondences.

5.1.4 Scale-aware disparity regression

In pixel-wise problems, such as semantic segmentation, it is common to use loss

functions at different levels of the network. However, the stereo matching problem

has another particularity given that the distance (in pixels) between two points varies

when we rescale the stereo pair. For example, two corresponding points will be two

times closer when we down-sample the feature space by a factor of two. Because

of this, we use a absolute difference loss where the labels, yn, are scaled by the

pyramid’s level downsample factor, s.

Loss =
1
N

N

∑
n=1

∥∥∥dn−
yn

s

∥∥∥ (5.1)

Apart from deriving a more accurate representation of the matching problem, scal-

ing the labels by the downsample factor of the network’s level also implicitly mini-

mizes the importance given to small displacements in the lower resolution levels.
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5.2 Experimental evaluation
We train and quantitatively evaluate our method using a popular stereo dataset:

Scene flow [115]. The Scene Flow dataset created from synthesized environments,

containing 35,454 training image pairs and 4,370 testing image pairs. Dense, high

quality groundtruth disparities are provided for both training and testing sets. There-

fore, we use the Scene Flow dataset to investigate different aspects of our method.

5.2.1 Experimental details

All parameters are randomly initialized with a normalized Gaussian distribution and

input images are color normalized to have zero mean and unit standard deviation.

All models were end-to-end trained with Adam optimizer [150] and a batch size

of 4. During training, we randomly sample smaller patches of size 320× 640 to

allow more diverse training batches while being memory efficient. The maximum

disparity was set to 192.

We train our models from scratch using the scene flow dataset with a initial learning

rate of 1×10−3 for 300K iterations. We also perform negative mining by training

the model an additional 5K iterations with images that have a predicted 3-pixel error

bigger than 10%.

All models were developed using Tensorflow [147] and trained on a single Nvidia

Titan Xp GPU.

5.2.2 Scene flow

We use the scene flow dataset to evaluate the importance of key ideas in this paper.

Scene flow is the only stereo dataset big enough to train deep networks without over-

fitting and to provide dense ground truth without any discrepancies due to erroneous

labels. Table 5.2 lists comparative results of the different variants of the proposed

HAPNet.

We first evaluate the effect of the 2D stacked hourglass encoders. By replacing this

block with the same number of convolution layers but without the encoder-decoder

structure. We verified that the hourglass block results in big improvements for large

disparity matches, resulting in a considerable decrease of the mean average error.
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Table 5.2: Evaluation of HAPNet with different settings on the scene flow test set. We
computed the percentage of three-pixel-error, >3px, of five-pixel-error, >5px, and the mean
average error (MAE)

HAPNet settings Scene Flow test set time (s)
2D Stacked Houglass Scale-aware loss Negative mining >3 px (%) >5 px (%) MAE (px)

10.65 7.17 2.92

0.05
X 9.16 6.19 1.89
X X 7.69 5.09 1.69
X X X 6.62 4.24 1.40

(a) (b) (c)

Figure 5.2: Scene Flow test set qualitative results. (a) left stereo input image; (b) disparity
prediction; (c) ground truth.

This indicates that the bigger receptive field of the 2D stacked hourglass block is

essential for the network to be able to encode large distance correspondences. The

proposed scaled loss also results in an incremental improvement in all evaluation

metrics. Finally, the negative mined images were mostly stereo pairs with large

disparity objects, which also significantly improved large displacement predictions.

Figure 5.2 shows qualitative results of our best model.

5.2.3 Comparison with other methods

We compare our methods with other methods that published their performances on

the scene flow test set and present them on Table 5.3.

The IResNet-i3 achieves the lowest 3 and 5 pixel error but with a relatively high
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Table 5.3: Comparative results on the Scene Flow testing set for other stereo CNNs. Four
different metrics are presented: three-pixel-error, >3px, of five-pixel-error, >5px, the mean
average error, MAE and total running time in seconds

Model >3 px >5px MAE Time (s)
DispnetC [115, 113] 9,67 - 1.84 0.06

GC-Net [17] 9.34 7.22 2.51 0.95
iResNet-i3 [114] 4.57 3.32 2.45 0.148

CLR [113] 6.20 - 1.32 0.47
HAPNet (ours) 6.62 4.24 1.40 0.05

MPE. The CLR network performs with a much lower mean average error but re-

quires much more computational power, requiring almost half a second to process

an stereo pair. Our performance comes slightly under CLR’s, even beating the very

deep and regularized GC-Net, but HAPNet is 10 times faster, being able to infer

disparity maps in real time. The only network comparable in speed is the DispnetC,

which under-performs our model in every metric.

Our results show that by simply adapting the architecture to the particularities of the

stereo matching problem, significant improvements can be achieved. Because we

avoid computational demanding operations, such as building a manual cost volume,

our model can run in real time with much smaller memory requirements.

5.2.4 Qualitative medical data

We qualitatively evaluate our method in three different medical environments. Fig-

ure 5.3 presents depth estimations from a PVA-C colon phantom manufactured from

a 3D model of a human colon. In Figure 5.4 we show depth estimations from in

vivo images collected in a partial nephrectomy procedure [151] and Figure 5.5 for

a prostatectomy procedure. Stereo data was acquired using a stereo camera from a

da Vinci Surgical System.

The low amount of detail and repetitive patterns in the colon phantom makes it a

particularly hard to find accurate stereo matches. Even when using deep features

(Figure 5.3 (b) [20] ), pixel level matching tends to be noisy and unreliable. On the

other hand, HAPNet produces visibly smother and more accurate disparity maps

by guarantying the spatial consistency of the environment. Because features are



5.2. Experimental evaluation 85

(a) (b) (c)

Figure 5.3: Colon phantom qualitative results. (a) left stereo input image; (b) disparity pre-
diction without spatial consistency [20]; (c) disparity prediction with the proposed method.
Images re-sized to 256×320 and processed in 0.014s.

(a) (b) (c)

Figure 5.4: Partial nephrectomy qualitative results. (a) left stereo input image; (b) dispar-
ity prediction without spatial consistency [20]; (c) disparity prediction with the proposed
method.Images re-sized to 192×384 and processed in 0.014s.

aggregated at different levels of the network, HAPNet is still able to handle sharp

depth transitions. A similar analysis can be done in Figure 5.4 adn Figure 5.5,

where the HAPNet tries to maintain depth consistency for the different tissue areas

and tools of the image. Because the resolution of this images is substantially lower

that the ones in the training data, some of the tools edges in the disparity maps are

not as sharp as the ones in the scene flow dataset.

5.2.5 Quantitative medical data

We also quantitatively evaluate out method on a public surgical stereo dataset [21]

depicting different real organs(liver, kidney, heart) captured from different angles

and distances. Each sample contains two stereo image pairs(distorted and stereo-
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(a) (b) (c)

Figure 5.5: Partial prostatectomy qualitative results. (a) left stereo input image; (b) dispar-
ity prediction without spatial consistency [20]; (c) disparity prediction with the proposed
method. Images re-sized to 192×384 and processed in 0.014s.

Table 5.4: 3D error statistics as reported in [21]

Method Mean SD RMS Median Lower quartile Upper quartile Min Max
MADNet [152] 13.32 14.02 19.34 5.76 2.80 21.68 0.87 50.32

DeepPruner [153] 22.83 18.41 29.33 13.58 7.01 38.28 1.50 62.06
DispNet [115, 113] 7.47 8.68 11.45 4.98 2.90 7.62 1.43 49.36

HAPNet (ours) 2.46 1.39 2.82 2.17 1.48 2.95 0.54 6.34

rectified), a stereo calibration file, ground truth 3D reconstruction and validation

masks to limit the evaluation of the outputs in a specified region. The 3D geometry

of the tissue was captured using CT scans and the registration between the stereo

images and the reconstructed scene was done using markers visible both in the CT

scan and the images.

We compare our method with three other publicly available models trained on Scene

Flow dataset [115]: DispNet [115, 113], MADNet [152] and DeepPruner [153].

Predictions from networks are used to create 3D point clouds and the resulting re-

constructions are used to calculate all the error statistics metrics. The results are

presented in Table 5.4.

The proposed method outperforms all the other models in every single metric with-

out sacrificing computational efficiency. Table 5.4 shows that other models struggle

to accurately reconstruct challenging surgical environments. On the other hand,

even though it was trained with the same data, HAPNet is able to better generalize

achieving a mean error of 2.46 mms.
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5.3 Conclusion
In this section, we have proposed a novel, fast and memory efficient end-to-end ar-

chitecture for stereo vision applied to robotic surgery. It is able to learn to regress

disparity without any additional post-processing or regularization. We demon-

strated significant improvements are possible by small, problem specific adaptations

that simplify the learning problem. Our approach achieves competitive performance

in existing vision datasets like scene flow while being substantially faster than all

other architectures. For medical environments, we show that our model encapsu-

lates a wider receptive field which has a significant impact on dealing with high

disparity discontinuities and regularization needs.



Chapter 6

Conclusion

This thesis has presented novel methods for improving current CAD capabilities

in CRC disease screening and early detection by using artificial intelligence. The

presented research focused on two main directions of new development:

Disease detection: A new deep learning framework was developed for automatically

detecting and segmenting polyps in colonoscopy images and video. The newly pro-

posed approach takes advantage of the very rich representations available in CNNs

trained on large databases by fine-tuning them to perform polyp segmentation. We

compared the new networks’ ability to accurately detect and segment polyp struc-

tures in experiments on publicly available datasets with annotated ground truth.

Navigation: For improving navigation capabilities, a novel, fast and memory effi-

cient end-to-end CNN architecture for stereo vision applied to robotic surgery was

developed. This is a crucial step for inferring the extent of the colon surface that

was completely examine. Our model is able to learn to regress disparity without any

additional post-processing or regularization. We demonstrated significant improve-

ments are possible by small, problem specific adaptations that simplify the learning

problem. Our model encapsulates a wider receptive field which has a significant im-

pact on dealing with high disparity discontinuities and regularization needs, some-

thing particularly important in medical environments.
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6.1 Limitations

Whilst the performance of the polyp detectors trained is very encouraging it is

important to point out that there is still a considerable variability of performance

between different data domains. Performance on video data greatly increased by

simply fine-tuning on similarly acquired data which means that the EndoVis train-

ing data is still not completely representative of the existing range of commercial

imaging systems. As data collection keeps increasing, it is important to create a

diverse source of images with variability in lighting, scopes, bowel prep and oper-

ator expertise. It is also important to highlight that both MICCAI and our videos

are significantly curated. Both are composed of high-definition, high-quality pre-

selected images. In reality, approximately between 30% and 40% of frames in a

colonoscopy withdrawn video suffer from severe artifacts such as blurring, inter-

lacing, lens flares, poor bowel-prep and specular highlights. Guaranteeing that the

models can ignore these cases and still detect lesions is crucial in the translation of

any CAD system to a clinical environment.

When it comes to pathology detection, it is common to focus on maximizing a

model’s sensitivity. In colonoscopy procedures, the consequences of missing a le-

sion are potentially much higher than a false positive detection. However, it is

important to remember that a system with a high number of false positives has very

low clinical value. Let’s take the high specificity of 92.5% that we archived in

our video data. In other words, the model predicts 7.5 false positive polyp detec-

tions for every 100 evaluated frames. When we consider the common frame rate

of 30 fps in a standard 15 minute withdrawal this means 2025 false alarms in a

single procedure. While again, a false detections in a colonoscopy procedure have

small consequences (mostly increasing the duration of the procedure) continuous

false alarms will eventually erode the confidence of the operator in the CAD sys-

tem. This problem is again related with the data restrictions. More representative

datasets should allow CNNs to more accurately identify healthy colon mucosa and

different image artifacts.

When it comes to 3D colon mapping this work is closer to a first stepping block than



6.2. Future work 90

a full functional mapping system. All models solely focus on the stereo matching

problem and they are evaluated using the inferred disparity maps. While crucial,

stereo matching is just the first step on creating a full 3D mapping of an environ-

ment. After stereo correspondences are found they still need to be projected to

a 3D point cloud coordinate system and sequentially merged as new parts of the

environment are seen. Wrong stereo correspondences and non-rigid surfaces need

to be accounted for. While several 3D mapping pipelines have been proposed in

natural images their performance in colonoscopy still needs further research. Fi-

nally, the biggest limitation is again related to data. There is still no large scale

medical dataset available for a thorough 3D stereo matching evaluation. Acquiring

3D ground truth data in medical environments is a research topic in itself and is

something that, in the era of deep learning, is receiving more and more attention.

6.2 Future work

The work presented in this thesis has numerous possible extensions that are closely

linked with the limitations described previously.

The polyp detection models were trained and evaluated in highly curated data which

might not be very representative of most colonoscopy data ”in the wild”. As efforts

to acquire new data increase these models are only expected to perform better by

simply increase the amount of training data. Also, due to data limitations the de-

veloped models perform per-frame detection. Colonoscopy provides temporal in-

formation that is being completely ignored with this approach. Temporal methods,

such as R-CNNs or LSTMs, become more of a viable option as more video data is

captured and labeled. Temporal methods would be expected to significantly reduce

the number of false detections by ignoring temporally inconsistent detection.

The stereo matching models proposed can be easily integrated in full SLAM-like

pipelines. Even without reliable ground truth data available, a qualitative analyses

of the reconstruction a full withdrawal would highlight the next biggest challenges.

Furthermore, there is the potential that depth information extracted during stereo

matching could help in hard polyp detection. Investigating a way to merge detection
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and stereo matching in a single architecture might not only improve both tasks but

significantly reduce the computational burden of the final CAD system.

The field of deep learning moves at astonishing speeds. As such, it is hard for

models to stay competitive for long periods of time. For natural images tasks, a

continuous flow of new learning techniques is constantly proposed. While many of

these could be used to improve any of the proposed methods, the biggest limitation

in the medical field is still the data availability. As more data is made available more

weaknesses will be highlighted in current models. Likewise, the biggest jumps in

performance will most likely originate from increases in training data.
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de Lange, Dag Johansen, and Håvard D Johansen. Kvasir-seg: A segmented

polyp dataset. In International Conference on Multimedia Modeling, pages

451–462. Springer, 2020.

[61] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-

sification with deep convolutional neural networks. In Advances in neural

information processing systems, pages 1097–1105, 2012.

[62] Hao Chen, Xiao Juan Qi, Jie Zhi Cheng, and Pheng Ann Heng. Deep con-

textual networks for neuronal structure segmentation. In Thirtieth AAAI con-

ference on artificial intelligence, 2016.

[63] Sungheon Park, Myunggi Lee, and Nojun Kwak. Polyp detection in

colonoscopy videos using deeply-learned hierarchical features. Seoul Na-

tional University, 2015.

[64] Younghak Shin and Ilangko Balasingham. Comparison of hand-craft fea-

ture based svm and cnn based deep learning framework for automatic polyp

classification. In 2017 39th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC), pages 3277–3280.

IEEE, 2017.

[65] Patrick Brandao, Odysseas Zisimopoulos, Evangelos Mazomenos, Gastone

Ciuti, Jorge Bernal, Marco Visentini-Scarzanella, Arianna Menciassi, Paolo

Dario, Anastasios Koulaouzidis, Alberto Arezzo, et al. Towards a computed-

aided diagnosis system in colonoscopy: automatic polyp segmentation us-

ing convolution neural networks. Journal of Medical Robotics Research,

3(02):1840002, 2018.



Bibliography 101

[66] Nima Tajbakhsh, Suryakanth R Gurudu, and Jianming Liang. A comprehen-

sive computer-aided polyp detection system for colonoscopy videos. In Inter-

national Conference on Information Processing in Medical Imaging, pages

327–338. Springer, 2015.

[67] Bilal Taha, Jorge Dias, and Naoufel Werghi. Convolutional neural net-

workasa feature extractor for automatic polyp detection. In 2017 IEEE Inter-

national Conference on Image Processing (ICIP), pages 2060–2064. IEEE,

2017.

[68] Mustain Billah, Sajjad Waheed, and Mohammad Motiur Rahman. An au-

tomatic gastrointestinal polyp detection system in video endoscopy using

fusion of color wavelet and convolutional neural network features. Inter-

national journal of biomedical imaging, 2017, 2017.

[69] Ruikai Zhang, Yali Zheng, Tony Wing Chung Mak, Ruoxi Yu, Sunny H

Wong, James YW Lau, and Carmen CY Poon. Automatic detection and

classification of colorectal polyps by transferring low-level cnn features from

nonmedical domain. IEEE journal of biomedical and health informatics,

21(1):41–47, 2016.

[70] Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu, R Todd Hurst, Christo-

pher B Kendall, Michael B Gotway, and Jianming Liang. Convolutional neu-

ral networks for medical image analysis: Full training or fine tuning? IEEE

transactions on medical imaging, 35(5):1299–1312, 2016.

[71] Xi Mo, Ke Tao, Quan Wang, and Guanghui Wang. An efficient approach for

polyps detection in endoscopic videos based on faster r-cnn. In 2018 24th

International Conference on Pattern Recognition (ICPR), pages 3929–3934.

IEEE, 2018.

[72] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: To-

wards real-time object detection with region proposal networks. In Advances

in neural information processing systems, pages 91–99, 2015.



Bibliography 102

[73] Ming Chen, Peng Du, and Dong Zhang. Massive colonoscopy images ori-

ented polyp detection. In Proceedings of the 2018 5th International Con-

ference on Biomedical and Bioinformatics Engineering, pages 95–99. ACM,

2018.

[74] Jaeyong Kang and Jeonghwan Gwak. Ensemble of instance segmentation

models for polyp segmentation in colonoscopy images. IEEE Access, 2019.

[75] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You

only look once: Unified, real-time object detection. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 779–

788, 2016.

[76] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott

Reed, Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox

detector. In European conference on computer vision, pages 21–37. Springer,

2016.

[77] Ming Liu, Jue Jiang, and Zenan Wang. Colonic polyp detection in endo-

scopic videos with single shot detection based deep convolutional neural net-

work. IEEE Access, 7:75058–75066, 2019.

[78] Zbigniew Wojna, Vittorio Ferrari, Sergio Guadarrama, Nathan Silberman,

Liang-Chieh Chen, Alireza Fathi, and Jasper Uijlings. The devil is in the

decoder: Classification, regression and gans. International Journal of Com-

puter Vision, pages 1–13, 2019.

[79] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 3431–3440, 2015.

[80] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolu-

tion network for semantic segmentation. In Proceedings of the IEEE inter-

national conference on computer vision, pages 1520–1528, 2015.



Bibliography 103

[81] Patrick Brandao, Evangelos Mazomenos, Gastone Ciuti, Renatio Caliò, Fed-
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