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Abstract: Colonoscopy remains the gold standard investigation for colorectal cancer screening
as it offers the opportunity to both detect and resect pre-cancerous polyps. Computer-aided polyp
characterisation can determine which polyps need polypectomy and recent deep learning-based
approaches have shown promising results as clinical decision support tools. Yet polyp appearance
during a procedure can vary, making automatic predictions unstable. In this paper, we investigate
the use of spatio-temporal information to improve the performance of lesions classification as
adenoma or non-adenoma. Two methods are implemented showing an increase in performance
and robustness during extensive experiments both on internal and openly available benchmark
datasets.
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1. Introduction

Colorectal cancer is the third most prevalent cancer worldwide and early detection and treatment
can significantly improve the patient’s prognosis [1]. During colonoscopies the bowel is inspected,
and diagnosis and treatment of pre-cancerous polyps is carried out [2]. Differentiating polyp
types intra-operatively rather than relying on histology post-procedure can potentially minimise
unnecessary interventions for harmless polyps, saving time and costs. Such strategies are already
advised by the American Society for Gastrointestinal Endoscopy (ASGE) to avoid unnecessary
histopathological analysis of diminutive (< Smm) adenomatous lesions and to leave in situ
hyperplastic polyps in the rectum or sigmoid [3], which has be shown to save significant healthcare
costs [4]. Direct optical diagnosis of polyps can be attempted using chromoendoscopic image
modalities such as narrow-band imaging (NBI) or Blue Laser Imaging (BLI) [5], and validated
classification systems such as the NBI International Colorectal Endoscopic (NICE) classification
[6]. However, this is challenging and performance varies significantly between novice and expert
endoscopists [7-9].

Computer-aided diagnostic (CADX) systems can be used to augment optical diagnosis and
differentiate between adenomatous, hyperplastic or sessile serrated polyps in the colon. Polyp
classification methods have been widely investigated, focusing on classifying hyperplastic against
adenomatous polyps [10-13] or on adenoma against non-adenoma classification (hyperplastic
and sessile serrated lesions) [10,12,14—17]. In preclinical studies, it has been shown that such
CADx systems can be used as a decision support tool, allowing novice endoscopists to reach
near-expert levels of accuracy [13].
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Technically, most recent CADx approaches are based on deep learning with a range of
architectures being reported [18] including semi-supervised learning [19] and the fusion of
different input modalities [20]. Endoscopes providing magnified chromoendoscopy enhance
the mucosal patterns and improve optical diagnosis. Some studies focus on the use this type of
data for classification of colorectal polyps with promising results [21-24]. However, this type of
endoscope is not widely available and CADx systems that can be used on non-magnified data are
extremely useful.

Machine learning techniques rely on data, hence public polyp histopathology datasets have
started becoming available [25-27]. Polyp datasets are curated and usually contain good-quality
images with clear views of the polyp. These have been used to train and evaluate CADx models
with very promising results based on different combinations of colour, texture and shape features
[10,28-30]. However, such studies only train and test on selected high-quality frames, which
does not demonstrate their generalisation capabilities to operate on real-time videos. One of
the problems associated with clinical practice videos is that obtained views of the same polyp
can vary greatly due to different camera orientations, changes in lighting, mucosa deformability,
presence of artifacts and blurriness, etc. For applied clinical use, CADx systems need to be
stable to such observational differences (see Fig. 1) and present consistent predictions for the
same lesion. It is therefore important to evaluate the consistency, as well as to report results on a
per-frame and per-polyp basis.

(a) Adenoma examples

(d) Non-adenoma examples

(b) Adenoma predictions 7 a
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(c) Non-adenoma predictions
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Fig. 1. Examples of polyp appearance variation (with expert polyp boxes in blue) for (a) an
adenoma and (d) non-adenoma polyp. The timelines (middle) show example predictions on
the adenoma video sequence (b) and non-adenoma sequence (c) - green, red and grey denote
correct and incorrect predictions and non-annotated frames, respectively.

In practice, endoscopists use both spatial and temporal information when detecting and
diagnosing polyps, where observing the polyp over consecutive frames in a video aids the
task. The use of spatio-temporal information has been shown to improve other interventional
applications, such as surgical phase recognition [31], polyp size estimation [32] or polyp detection
[33-35]. In this study, we focus on incorporating such spatio-temporal information within
polyp diagnosis CADx for the first time. We show how two different methods to incorporate
temporal information for adenoma and non-adenoma classification can be implemented and the
improvement over single shot classification that they can achieve. Long-short Term Memory
(LSTM) networks continue to stand as one of the preferred ways to combine temporal information
in medical videos [36—-38]. Besides their high performance, LTSM modules are lighter than
3D architectures, which reduces overfitting when handling few videos. For these reasons, a
method incorporating an LSTM module was used as one of the spatio-temporal methods, and
was compared to simple but powerful temporal combinations of the predictions inspired by
post-processing techniques in ensembling.

The proposed solutions were extensively evaluated, both on internal data using cross-validation
and external data to evaluate generalisability. An in-depth evaluation of performance was carried
out, reporting standard metrics as well as polyp accuracy in order to evaluate the consistency
of predictions. Polyp classification needs to be carried out per lesion. To overcome the fact
that several polyps can be in view simultaneously in a video frame, the classification is applied
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only to the region of the image containing the polyp. The spatio-temporal methods were tested
recreating a clinical environment workflow using them in combination with a polyp detection
model. This highlighted the benefits temporal methods bring in this setup. Finally, the polyp
diagnosis methods were quantified in terms of the quality of the polyp location to evaluate the
classification robustness.

2. Methods

Two spatio-temporal methods were implemented for adenoma/non-adenoma video clip classifica-
tion, namely a Long-Term Recurrent Convolutional Network (LRCN) [39] and Convolutional
Network (ConvNet) predictions combination. The LRCN 2D+t (frame-based approach with
time) model was implemented to classify short video clips. In the second method, each video
was decomposed into frames and each frame was first classified with a standard ConvNet,
followed by combining the outputs to generate a final prediction. Several combination methods
traditionally used for ensembles were explored, namely soft averaging, plurality vote and extreme
vote. Figure 2 presents the networks’ architectures.
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(a) LRCN architecture. The ConvNet backbone generates a (b) ConvNet combination architecture. Each feature
feature vector f for each input image x. The LSTM module vector generated by the ConvNet is then passed
uses the features and the previous hidden state & to generate through a fully connected layer to generate one
hidden and cell states c. The final hidden state is passed through prediction per image x. All k predictions are merged
a fully connected layer to obtain the final output. to obtain a final output.

Fig. 2. Architectures of the proposed spatio-temporal methods for adenoma/non-adenoma
video clip classification.

The models were trained for a maximum of 20 epochs, SGD as the optimizer with a learning
rate of 0.0001. Cross-entropy loss was used using balanced class weights to assign each
class weights inversely proportional to their respective frequencies. The overall balance of
adenoma/non-adenoma boxes was 76%/24%, but it differed on each fold. Batch sizes were
selected based on available GPU memory. The code was implemented on Pytorch 1.6 on Ubuntu
18.04.4 LTS with a GeForce RTX 2080 GPU.

Both methods were developed with a shared backbone, a Resnet50 ConvNet [40], in order
to allow for comparison. The backbone was additionally used as a baseline for ablation studies
analysis. Moreover, the explored architectures were studied following a full workflow setup
where a polyp detection model predicted the location of the polyp in each image, then used for
the classification task. In this section, the development of the methods is described, along with
the data handling.
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2.1. Datasets

A dataset of colonoscopic videos was used for our experiments. The videos were collected
at University College Hospital in London between 2018 and 2021 (project ID 236056). All
adenomatous polyps (tubular adenoma, villous adenoma, tubulovillous adenoma) and serrated
polyps (hyperplastic, traditional serrated adenoma, sessile serrated lesion) were included. All
other polyps were excluded. Videos were collected using Olympus 260 and Olympus 290
endoscopes (Olympus Lucera) and annotated by expert endoscopists to include a bounding box
around visible polyps. Polyp-related image quality labels were also added, deeming the image as
high-quality if the polyp(s) was discernible. Histology results were adopted for adenoma and
non-adenoma ground-truth labels. Table 1 includes further information about the data. Only NBI
frames containing annotated polyp boxes were considered, including NBI-Near Focus frames.

Table 1. Description of the internal and external (Piccolo Dataset [26]) datasets.

Internal Dataset External Dataset

Patients 215 40
Lesions 419 76

Diminutive polyps (< Smm) 54.56% 27.63%

Histology (adenoma/non-adenoma) 59.35%/40.65% 65.79%/22.37%
Frames registered 1,821,285 3,433

NBI 11.76% 37.93%

NBI-Near Focus 9.18% 0%

Annotated polyp frames 7.04% 100.00%

High-quality 6.75% -

Additionally, the Piccolo Dataset was used as an external testing set. It is a publicly available
dataset that comprises 3433 manually annotated images (2131 white-light images 1302 narrow-
band images), originated from 76 lesions from 40 patients using Olympus endoscopes (CF-H190L
and CF-HQ190L). Low quality and uninformative frames were removed, and the videos were
sampled every 25 frames. Each lesion has an associated histology as adenoma, hyperplasia or
adenocarcinoma as well as a binary mask with the location of the polyp [26]. We considered
hyperplastic polyps as non-adenoma, and excluded adenocarcinomas. Only NBI sequences were
used in this study.

2.2. LRCN

A LRCN architecture was used to classify video clips as adenoma or non-adenoma. This
architecture was selected because of its success on time-series tasks, and due to its ability to
learn disentangled spatial and temporal representations. Other 3D models such as C3D extract
spatio-temporal features, which can be useful for tasks such as action recognition where the
objects movement is part of the action. However, in the case of polyp diagnosis where the
video is egocentric, the motion of the camera does not determine the type of polyp. The LRCN
architecture combined a deep visual feature extraction (such as a ConvNet) with a Long-Short
Term Memory (LSTM) module to collate temporal dynamics for sequential data tasks [39].

In the current implementation, a Resnet50 backbone [40] was used as the deep encoder to
extract a spatial feature representation. Its final fully connected layer was removed, the backbone
generating a feature vector with 2048 elements per input frame. The ConvNet backbone was
followed by a LSTM module, which was composed of a single layer with 100 hidden units.
The size was chosen experimentally in order to balance performance against overfitting. A
many-to-one structure was implemented, where for each clip input composed by k frames we
used the output 4 from the last frame iteration, as it encompassed temporal information from all
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previous frames in the clip. The 100 output features were finally passed through a fully connected
layer to obtain two output classes, namely adenoma and non-adenoma. Figure 2(a) illustrates the
architecture of our LRCN network.

The backbone was pretrained on the available frames and its weights frozen when training the
LRCN, as this setup showed a small experimental improvement when compared to end-to-end
training. The learning rate was reduced on plateau by a factor of 0.1 with a patience of four
epochs. The overall inference speed was 72.21 frames/second on our GPU.

2.3. ConvNet predictions combination

The second spatio-temporal method utilised consisted on aggregating the ConvNet outputs. In
this 2-step method, each visual input x; (a frame from the input video clip) was first passed through
a Resnet50 ConvNet for spatial encoding to produce a continuous prediction p(y|x) € [0, 1]. For
this first step other Resnet architectures were experimentally explored, but larger networks were
found to overfit with the amount of data available. The network was pretrained from ImageNet
weights. For all experiments, the Resnet50 was trained with a batch size of 64.

A second step was used to incorporate temporal information. Several methods were explored
for this phase, namely soft averaging, plurality vote and extreme vote. In soft averaging, softmax
outputs obtained from all frames in a clip of length k were averaged to obtained a temporally
weighted output z for each clip, as described in Eq. (1).

1 k
a= ;p(ylxi) (D

where p(y|x;) corresponds to the probability prediction from the ConvNet after softmax for an
input frame x;.

The plurality vote was obtained by thresholding predictions from each of the k frames and
selecting the class label with the most votes. This generated binary predictions instead of
continuous outputs. In the case of extreme voting, the frame output with the highest or lowest
prediction was selected as the final prediction, as shown in Eq. (2).

z = max |p(ylx;) - 0.5] 2
Viek

In the case of soft averaging and extreme voting, the final prediction z was finally thresholded
with a value of 0.5 to obtain a final output y (Eq. (3)). The overall inference speed was 97.20
frames/second on our GPU.

0 ifz<T
y= { 3)

1 ifz>T
where T is the selected threshold 7' = 0.5.

2.4. Data processing

A clip was defined as a set of k consecutive frames. Clips were extracted from the colonoscopic
videos in a sliding window fashion with a stride of one to maximize the number of clips. For the
internal dataset, frozen video sequences were excluded to ensure variation within the clips. Only
clips where >50% of the frames were labelled as high-quality were included to simulate the
clinical setup, where the endoscopist performs visual diagnosis once a good view of the polyp
is obtained and the polyp features are visible. The >50% threshold was selected to ensure a
balance between sufficient image quality and the amount of discarded data. In the Piccolo dataset
consecutive frames were not available as the videos are sampled every 25 frames, so clips were
composed of non-consecutive, ordered frames, and no clips were discarded due to image quality.
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The LRCN model was trained with each clip as an input sample, whereas the ConvNet was
trained with all the frames included within the LRCN clips, ensuring the same frames were
utilised for both methods, although less samples were used for LRCN. After excluding white light
sequences, low-quality clips and lesions with less than k frames, the baseline model was trained
with a total of 27,087 frames from 197 polyps from 89 colonoscopy procedures, for k = 15. As a
note, Fig. 3 shows an example of how clips were discarded when they contained non-annotated
frames, reducing the amount of available samples.

r T T T T T T >
0 1.0 2.0 3.0 4.0 5.0 6.0

time (seconds)

Fig. 3. Prediction timelines for the same polyp sequence with (a) LRCN, (b) ConvNet
averaging and (c) ConvNet - green, red and grey denote correct and incorrect predictions
and non-annotated frames, respectively. Note: the spatio-temporal methods present shorter
timelines as the last k — 1 = 14 samples (0.6 seconds) did not have enough following frames
to create a clip.

Random sampling of 5000 frames was performed on each epoch, re-sampling each time,
to minimise overfitting [41]. Data augmentation was applied in such a way as to guarantee
identical augmentations within clips. The augmentation operations consisted of random affine
transformations (rotation, translation and scaling) and random colour transformations (brightness,
contrast and saturation). Finally, the images were preprocessed by cropping around the polyp
boxes annotated by experts, followed by resizing the images to 224 by 224 pixels and an intensity
normalization step. Only the polyp area was used as an input to the networks, discarding the
remainder of the image. This ensures that the adenoma classification model can be used in a
clinical setting, where more than one polyp can be present in a frame.

All models were trained with 5-fold patient cross-validation. For all experiments, the same
folds were respected, to ensure a fair comparison between models. For each fold, each patient’s
video was used for either training or testing following an 80-20% split, avoiding any data
contamination. The patient splits were generated optimizing the distribution balance between the
training and testing sets in terms of the number of NBI polyp frames, the number of different
lesions, the polyp size (in pixels), the polyp types and the quality of the images.

2.5. Detection and classification pipeline setup

In a clinical setup, the locations of the polyps in each colonoscopy frame would not be provided
by experts, but by a computer-assisted detection (CAD) model. It was paramount to implement
such a pipeline consisting of a polyp detection model followed by a polyp classification model, in
order to assess the full polyp classification workflow.

A polyp segmentation model, an FCN-Resnet101, was trained on our internal dataset using
the same 5-fold cross-validation splits used for the previous experiments. A new set of predicted
bounding boxes was obtained on frames from each of the 5-fold testing sets using the polyp
detection network results as follows: (i) frames containing multiple polyps were discarded; (ii) if
only one region was predicted as a polyp, the detected region was circumscribed by a rectangular
bounding box; (iii) if multiple regions were detected (when false positives occurred), they were
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enclosed as a single prediction in the same bounding box; (iv) if no polyp was detected, the frame
was discarded as no box could be used to crop the image.

3. Experimental results
3.1. Evaluation metrics

Traditional metrics were used for the evaluation of the methods, namely accuracy, sensitivity
and specificity (always using a threshold of 50%) as well as area under the curve (AUC). These
metrics were computed using all boxes from all evaluated frames. When testing on internal data,
the results from all folds were aggregated together and the metrics were computed on the entire
dataset. Additionally, we introduced polyp accuracy. It quantifies the percentage of correctly
predicted frames in a polyp, averaged across all polyps. In Tables 2, 3 and 4, polyp accuracy is
given as the mean of all polyp accuracies, with a 95% confidence interval (CI). Polyp accuracy
allows knowing if, on average, the polyps have a high or low per-frame accuracy. Because high
per-frame accuracy for a polyp means high consistency in the predictions, this metric gives an
indication of the robustness of the models to temporal differences.

3.2. Baseline performance

A Resnet50 was trained as our baseline ConvNet. Other architectures were explored for polyp
classification, but Resnet architectures showed the best results empirically. Different model sizes
were explored, however Resnet50 gave a good balance between performance, training time and
generalisability. In order to allow for comparison with other methods, the frames used for the
baseline were the same frames used for the temporal experiments, containing images from a 15
frames clip extraction using 5-fold cross-validation, as detailed in Section 2.4.

Table 2. Polyp diagnosis cross-validation results the internal dataset.

Method Clip size Accuracy(%) Sensitivity(%) Specificity(%) AUC(%) Polyp accuracy(%) [95% CI]
ConvNet N/A 81.67 83.91 76.21 88.61 77.13 [73.01, 81.25]
LRCN 15 86.02 89.62 77.08 92.60 80.34 [76.00, 84.68]
ConvNet soft 15 84.64 85.70 82.03 91.93 79.20 [74.51, 83.90]
averaging

ConvNet plurality 15 84.91 85.85 82.56 84.21 79.49 [74.83, 84.16]
vote

ConvNet extreme 15 83.15 83.56 82.13 90.86 77.76 [73.03, 82.48]
vote

As it can be observed in Table 2, the Resnet50 model achieves an 88.61% AUC, with per-frame
sensitivity surpassing 80% in our internal dataset. It is crucial to evaluate the per-polyp accuracy,
as it reflects the distribution of correct/incorrect predictions throughout the polyps. In this case, a
drop in accuracy occurs when evaluating per polyp, due to the fact that longer polyp videos in
this dataset perform better than shorter videos. On average, the baseline model will correctly
predict 77.13% [95% CI: (73.01, 81.25)] of the frames for a polyp. In practical terms, around a
quarter of the predictions will fail for each polyp, showing a lack of consistency when predicting
on different frames of the same lesion. In clinical practice this poses problems in terms of trust
towards the CADx model and reduces the usability of the system.

3.3. Effect of temporal methods on polyp diagnosis

The weights from the Resnet50 ConvNet were used to initialise the LRCN backbone. Additionally,
the ConvNet baseline predictions were combined for each 15-frame clip in the test set to obtain
per-clip results. It is important to note that, even though all methods were tested on the same
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frames, the baseline was evaluated per frame, whereas the temporal methods were evaluated on a
per-clip basis. As it can be observed in Table 2, all methods incorporating temporal information
surpassed the ConvNet baseline performance when evaluating with traditional metrics, with
up to a ~3% increase in the area under the curve (AUC) with LRCN. Regarding ConvNet
combination methods, extreme voting presents a lower performance than soft averaging and
plurality vote across all metrics. Soft averaging and plurality perform similarly, but soft averaging
was found preferable as the threshold can be calibrated for this method. In further experiments,
soft averaging was selected as the optimal ConvNet combination method. In turn, ConvNet
soft averaging and LRCN show similar results with a different balance between sensitivity and
specificity but similar AUC.

The per-polyp accuracy also increased for all temporal methods, with a higher improvement
on the LRCN, showing that most polyps benefit from the temporal information, rather than just
a few longer polyp sequences. Additionally, Fig. 4 shows the results from these experiments
with a focus on the results per polyp. Boxplots are presented for the per-polyp accuracy, where
the accuracy for each polyp is computed as the ratio of correctly classified samples in a polyp.
It can be observed that both temporal methods improved the per-polyp results. The median
of polyps accuracy increased to nearly 100%, and the fourth quartile increased 20% for both
models. Polyps that had a high accuracy improved with temporal methods. Contrary, polyps
that presented low accuracies (<50%) with the baseline presented an even lower accuracy with
the temporal methods. Therefore, low polyp-accuracy outliers remain in both cases. Overall,
the use of these techniques increased the consistency of the predictions within the same polyp,
which can be further observed in the example timelines presented in Fig. 3. For the same polyp,
the baseline ConvNet predicted most frames correctly, but yielded a considerable amount of
mispredictions, with low temporal coherence. Both temporal methods increased the consistency
of the predictions, the LRCN in this lesion yielding a 100% accuracy.
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Fig. 4. Boxplots showing the per-polyp accuracies for each method.

3.4. Comparison between temporal methods

In order to gain some understanding of the benefits of the different temporal methods, further
analysis was performed. The temporal methods were evaluated in terms of the amount of temporal
information present in the clips. The similarity of the frames within a clip was quantified by
the means of normalised cross-correlation (Eq. (4)). The normalised cross-correlation (NCC)
between consecutive frames was computed and averaged across each clip. High NCC values
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indicate small appearance variations within a clip.
2wy U () - T(x+ X,y +))
\/Zx’,y’ I,'/+1 (x/7 Y')z ' Zx’,y’ I/(x +x',y+ y/)Z

R(x,y) = “

where I denotes an image, [;;; the following image and R the NCC result. The summation is
done over the image pixels: x’ =0---w—1,y" =0---h— 1 (where w and & are the width and
height of the frame).

Figure 5 shows how the performance varies for different clip similarities. A Pearson’s
correlation statistical analysis with @ = 0.05 was performed. For LRCN, it was observed that all
performance metrics were negatively correlated to the similarity of a clip, but only the accuracy
and sensitivity reached the critical value for statistical significance. Contrary, the ConvNet
averaging method only showed a statistically significant decrease in sensitivity but not accuracy
or specificity. Overall, the results suggest that the performance of LRCN decreases when clips
show a high cross-correlation and that the ConvNet averaging method is not importantly affected
by the amount of new information within the clip. In both cases, the specificity is unstable,
possibly because the negative non-adenoma class is under-represented in our dataset.

(a) LRCN (b) ConvNet averaging
1.00 T
—— Accuracy Sensitivity —— Specificity

0.95 4

0.90 4

0.85 4

0.80 4
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0.70 4
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0.975 0.980 0.985 0.990 0.995 1.000 0.975 0.980 0.985 0.990 0.995 1.000
cross correlation cross correlation

Fig. 5. Performance for (a) LRCN and (b) ConvNet averaging for different clip cross-
correlations - higher cross-correlation implies higher intra-clip similarity and lower variation.
95% confidence intervals are shown with transparency.

To further assess if the LRCN benefits from increased temporal information, the model was
trained and evaluated with different clip lengths ranging from 3 to 15-frame clips. It is important
to note that increasing the clip size considerably reduced the number of available clips. Figure 6
shows that the performance tended to improve with longer clips, with gains in accuracy and AUC,
showing that LRCN may benefit from longer clips integrating higher temporal variation.

Example clips are shown in Visualization 1. Figure 7 shows some example results from LRCN
and ConvNet averaging. The top row shows frames from 15-frame clips where ConvNet averaging
correctly classified but LRCN failed, and the second row vice-versa. ConvNet averaging performs
better when classifying non-adenomas as it has a higher specificity, whereas the LRCN succeeds
more at the classification of adenomas.

3.5. Detection and classification pipeline

The proposed methods for polyp type classification use the polyp region in the image, defined
by a bounding box, as an input to the models (the area inside the blue boxes depicted in Fig. 1).
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Fig. 6. LRCN performance when trained with different clip sizes.

(a) Non-adenoma (b) Non-adenoma

(d) Adenoma (e) Adenoma (f) Non-adenoma

Fig. 7. Classification results examples. The top row shows examples where ConvNet
averaging succeeds and LRCN fails, and the bottom row examples where the opposite occurs.

All previously presented experiments use the expert annotations for the location of the polyp to
train and test the networks. Nevertheless, it is important to evaluate the methods in a realistic
setup where the polyp location is unknown. An additional experiment was therefore performed
using a polyp detection model to obtain the polyp bounding box location in each image prior to
the polyp classification methods, simulating the real workflow in a clinical setup. Regarding
the performance of the polyp detection network, a total of 353 images were discarded due to
polyp detection false negatives (98.72% sensitivity). Additionally, the detection network yielded
2,413 false positives (91.88% precision), generating less accurate boxes containing part of the
background mucosa.

The results using the detection model are presented in Table 3. When compared to the results
presented in Table 2, all diagnosis methods show a drop in performance, possibly due to a
lower quality of the polyp localisation from partial views of the polyp. However, the temporal
methods show a lower drop in polyp accuracy than the ConvNet baseline, showing that the
overall improvement in predictions consistency is maintained even when predicted boxes can be
temporally unstable. Particularly, the specificity of ConvNet averaging improved when using
predicted boxes regions, bringing an overall small increase in accuracy.
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Table 3. Polyp diagnosis cross-validation results on the internal dataset using predicted polyp

boxes.
Method Clip size Accuracy(%) Sensitivity(%) Specificity(%) AUC (%) Polyp accuracy(%) [95% CI]
ConvNet N/A 78.89 79.30 77.89 86.91 73.49 [69.17, 77.80]
LRCN 15 84.51 88.73 73.71 90.45 79.21 [74.49, 83.93]
ConvNet 15 84.69 84.35 85.56 91.16 78.17 [73.41, 82.93]

averaging

An additional experiment was carried out to evaluate the effect of the quality of the polyp
box, the hypothesis being that the performance of the classification model is correlated with
the quality of the crop. Each polyp was therefore evaluated using boxes with varying ranges of
intersection over union (IoU) with respect to the original box. Each polyp in each frame was
evaluated 9 times using boxes randomly generated presenting IoUs going from 5% to 95% with a
5% jump, so that all the IoU range was evaluated for each case. The image in the bottom right of
Fig. 8 shows a few examples of random boxes with different IoUs for the same polyp.
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Fig. 8. Models performance based on the quality of the position of the polyp box. The
bounding box around each polyp was randomly moved to achieve 9 new boxes with an
intersection over union (iou) with the original expert box ranging from 0.05 to 0.95. Area
under the curve (auc), accuracy, sensitivity, specificity and per-polyp accuracy are shown.
The image on the bottom right shows an example of the position of the original box (red
transparency) and boxes obtained with different ious.

The graphs in Fig. 8 show the results of the polyp diagnosis models when using the generated
random boxes to extract the polyp region. The results are presented as a function of the IoU. As
it can be observed, for all metrics the results improve for higher IoU values, showing that the
quality of the polyp detection is important for diagnosis purposes. However, the performance
plateaus when the IoU reaches approximately 50%, indicating that the classification performance
is robust to minor discrepancies in the position of the polyp box. For most metrics the temporal
methods reach a better performance than the baseline at lower IoU values (from an IoU of 0.2),
showing that they could be used more reliably when the polyp detection boxes have lower quality.
Interestingly, the specificity curves behave differently from the remaining performance metrics,
showing a peak for the Convnet based methods at approximately loU = 0.4 and the LRCN



Research Article Vol. 14, No. 2/1 Feb 2023/ Biomedical Optics Express 604 |

Biomedical Optics EXPRESS o~

presenting a more linear increase rather than exponential. This difference could be due to the
fact that non-adenomas can present more similarities to normal mucosa than adenomas, and
intermediate intersection over unions (0.3 - 0.7) would contain a partial portion of the polyp as
well as some background. The ConvNet performance is more skewed towards higher specificity
with the default threshold (7 = 0.5) than for the LRCN, which could explain the bump on
specificity when healthy mucosa is present in the box.

3.6. External dataset evaluation

The performance was measured on the publicly available dataset [26] described in Section 2.1.
To test on this dataset, each of the 5-fold models was used in an ensemble to generate the final
results for each method, using arithmetic mean combination. Table 4 shows the results for the
ConvNet baseline and the temporal methods. Results on the Piccolo dataset were found to be
comparable to the results on our internal data, with a drop of approximately 3% in accuracy for
all methods when compared to the results in Table 2. The sensitivity in this dataset was lower,
but a higher specificity was obtained, as well as slightly improved polyp accuracies. The number
of polyps on this dataset was limited, especially due to the fact that some polyps were excluded
from the evaluation as they did not contain 15 frames. The low number of samples was reflected
in the large confidence intervals obtained for the polyp accuracy results.

Table 4. Polyp diagnosis ensemble results on the Piccolo Dataset.

Method Clip size Accuracy(%) Sensitivity(%) Specificity(%) AUC (%) Polyp accuracy(%) [95% CI]
ConvNet N/A 77.36 72.83 98.02 96.81 78.08 [69.06, 87.09]
LRCN 15 83.05 78.95 100.00 97.60 82.20 [70.72, 93.68]
ConvNet 15 82.20 77.89 100.00 100.00 77.88 [62.27, 93.50]
averaging

Both temporal methods improved the per-frame performance, showing a higher AUC. Particu-
larly, both temporal methods show a 100% specificity in this dataset. LRCN showed an overall
higher polyp accuracy, approximately 4% above the baseline, showing higher generalisability
than the averaging method for the set threshold of 0.5.

4. Discussion and conclusion

In this paper, two approaches to exploit spatio-temporal features for polyp diagnosis were
investigated. CADx systems for polyp diagnosis have shown promising results in previous
literature. However, one of the limitations of these models is the inconsistency of predictions on
the same polyp. To tackle this problem, we implemented two methods to incorporate temporal
information in the predictions and improve the performance and the overall polyp accuracy.
First, we showed that implementing a simple temporal averaging over consecutive frames
increased the performance of a CADx system and considerably improved robustness when applied
to video data. Similarly, a more complex temporal model, LRCN, also yielded an improvement in
performance and robustness. Although both methods were found to have comparable performance,
our results indicated that the LRCN approach may benefit from larger temporal variations within
the window, which potentially indicates a favorable performance of this method on longer videos.
Both of the proposed methods were evaluated on internal data and on an openly available external
testing set. Cross-validation was used on our internal dataset, to ensure more representative
evaluation results. The methods were additionally compared to a spatial baseline, providing
ablation studies for fair comparison. The performance on the open dataset was found to be
comparable to the results on our internal data, supporting the fact that temporal information
brings an increase in polyp diagnosis performance. Furthermore, the fact that the external dataset
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did not contain consecutive frames from each polyps confirmed the generalisation capabilities of
the temporal implementations. It is important to point out that large-scale colonoscopy polyp
diagnosis datasets are lacking for both training and evaluation, but the problem is gaining traction,
for instance in the GIANA Endovis challenge [42].

Such a CADx model would be used in combination with a polyp detection model, where
the workflow would be to first detect a polyp in the image, and then use the detected polyp
region to obtain a polyp classification between adenoma and non-adenoma. As this study
aims to solve problems that arise from clinical use of such a device, it is imperative to test
the full setup to provide realistic results. A polyp detection model was therefore implemented
and run on the test videos. The obtained boxes were used for the different polyp diagnosis
methods. The results showed that the effect of using non-expert boxes was minimised when using
temporal diagnosis methods. An additional experiment evaluated the performance of each of the
classification techniques based on the quality of the polyp boxes. This analysis demonstrated
that the diagnosis capabilities were enhanced when the quality of the boxes improved, providing
a practical clue for its use in a clinical environment, where clinicians could discard diagnosis
predictions if the boxes are visually unsatisfactory. The results also show there might be scope to
improve the classification performance on low-quality boxes through the use of more extreme
data augmentation techniques. It is unclear where the turning point is where the position of a box
becomes inaccurate enough that it hides important features needed for polyp classification.

Future work includes the use of other spatio-temporal techniques, as well as the inclusion of
spatio-temporal data augmentation to decrease overfitting with small datasets. It was observed
that the information present in a clip could affect the performance of a spatio-temporal model.
This leads to think that there could be room to optimize the frames to use in a clip in a way that
the information present is maximised. In this sense, the inclusion of sampling techniques should
be explored as future work.
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