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onzález-Bueno Puyala,b,∗, Patrick Brandaob, Omer F. Ahmada, Kanwal K. Bhatiab, Daniel Tothb, Rawen Kadera, Laure
Peter Mountneyb, Danail Stoyanova

e/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London W1W 7TY, UK
ion, London W1W 7TY, UK

C L E I N F O

story:
1 May 2013
in final form 10 May 2013
13 May 2013
online 15 May 2013

icated by S. Sarkar

opy, Polyp Segmentation,
r Aided Diagnosis, Temporal
tion

A B S T R A C T

Colonoscopy is the gold standard for early diagnosis and pre-emptive treatment of
orectal cancer by detecting and removing colonic polyps. Deep learning approache
polyp detection have shown potential for enhancing polyp detection rates. However
majority of these systems are developed and evaluated on static images from colo
scopies, whilst in clinical practice the treatment is performed on a real-time video f
Non-curated video data remains a challenge, as it contains low-quality frames w
compared to still, selected images often obtained from diagnostic records. Never
less, it also embeds temporal information that can be exploited to increase predict
stability. A hybrid 2D/3D convolutional neural network architecture for polyp segm
tation is presented in this paper. The network is used to improve polyp detection
encompassing spatial and temporal correlation of the predictions while preserving r
time detections. Extensive experiments show that the hybrid method outperforms a
baseline. The proposed architecture is validated on videos from 46 patients and on
publicly available SUN polyp database. A higher performance and increased gene
isability indicate that real-world clinical implementations of automated polyp detec
can benefit from the hybrid algorithm and the inclusion of temporal information.

© 2022 Elsevier B. V. All rights reser

oduction

rectal cancer (CRC) is one of the most common types
er worldwide, accounting for 10% of all forms of cancer
t al., 2018). Early detection, diagnosis and treatment can
ely reduce CRC incidence and mortality (Van Rijn et al.,
Colonoscopy is the gold standard screening procedure
y CRC detection, during which the bowel is visually in-
for polyps and cancer using an endoscope (Rex et al.,
The risk of interval cancer was found to decrease by
ith each 1.0% increase in the adenoma detection rate
et al., 2014). Unfortunately, colonoscopy outcomes

esponding author
il: j.puyal@ucl.ac.uk (Juana González-Bueno Puyal)

are highly variable, with high inter-operator disparities (C
ley et al., 2014) as well as intra-operator dependency, w
detection rates decline with fatigue (Leufkens et al., 2012).

Computer-aided detection (CAD) systems to assist en
scopists in polyp detection tasks have been widely researc
in the last 30 years. Recently, great progress has been repo
(Hassan et al., 2019; Wang et al., 2018a,b) particularly when
ing approaches based on convolutional neural networks (CN
(Brandao et al., 2018, 2017; Tajbakhsh et al., 2015; Wang e
2018b). These approaches have reported robust and prom
ing results (Ahmad et al., 2019a) and multiple clinical s
ies and randomised control trials have begun to evaluate C
technology as well as to consider ethical and regulatory asp
(Su et al., 2020; Ahmad et al., 2019b). Notably, commer
CAD systems have recently emerged with technology ba
on deep learning such as GI Genius (Medtronic,USA) (Re

version);Polyp detection using a hybrid 2D3D CNN.pd
 view linked References
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Juana González-Bueno Puyal et al. /Medical Image Analysis (2022)

, 2020), CADDIE (Odin Vision, UK) (Odin Vision, 2020),
EYE (FujiFilm, Japan) (Weigt et al., 2020), DISCOVERY

tax Medical, Japan) (Medical, 2019), AI4G (AI4GI Corp.,
da) and (Olympus America, USA) (Chahal and Byrne,
), or EndoBrain (Cybernet Systems, Japan) (Kudo et al.,
). However, one of the main challenges when developing
learning models is the limited availability of labelled data

use full length colonoscopy videos are not usually recorded
cally and when recorded they are logistically challenging
ndle (Ahmad et al., 2020). On the contrary, still frames
regions of interest within the procedures are routinely

d in clinical reports enabling still image polyp databases
nal et al., 2017; Jha et al., 2020). As a result, while most
nt CAD systems have been developed using still images,
are translated to endoscopy units where real time videos
sed to detect polyps. Videos introduce difficulties as they
resent poor visibility and variability in polyp appearance

might lead to a lack of temporal coherence in consecutive
es yielding short, false predictions (Bernal et al., 2017).
therefore of paramount importance to demonstrate perfor-
e on videos and address model behaviour and stability in
ical conditions.
doscopic videos can be exploited to increase the temporal
lation in the predictions by extracting temporal represen-

ns. This line of thought has previously been employed for
s by the means of recurrent neural networks (RNN), such

ng short-term memory, 3D CNNs, or two-stream models,
nstrating state-of-the-art performance for action recogni-

tasks (Carreira and Zisserman, 2017). Similarly, the use
mporal information in endoscopic CAD has been studied
ifferent approaches. For instance, (Ma et al., 2020) show

that temporal consistency can be used to reliably dete
positive predictions and apply it for automatic data lab
Further, temporal architectures have been exploited suc
(Eelbode et al., 2019), where the authors implement an R
top of a CNN to improve polyp segmentation accuracy.
wise, dense 3D networks have been explored such as C
classify endoscopic frames containing polyps (Itoh et al.
Misawa et al., 2018; Itoh et al., 2019), a 3D fully convol
network for polyp segmentation (Yu et al., 2016) or a 3D
for polyp structures identification (Liu et al., 2020). Desp
benefits of 3D architectures, a major drawback of this t
models is the need of a large number of training samples
medical data collection remains a challenge. Various str
have been proposed to include temporal information leve
access to a limited number of videos. For example, in
et al., 2019) a false positive reduction stage was append
polyp detection model showing an increase in specificity
limiting the loss in sensitivity. Tracking algorithms can b
bined with detection CNNs to temporally refine results
re-initialisation of the tracker can be problematic (Zhang
2018; Poon et al., 2020). Recently an approach fusing tw
streams, one receiving the input frame, and the other on
cal flow information, was reported but can suffer from er
the optical flow estimation (Zhang et al., 2019).

This paper presents a hybrid 2D/3D architecture for
segmentation in colonoscopy videos. This network com
2D spatial representations with a third temporal dimensi
hybrid manner. The novel architecture presents the ben
traditional 2D networks, allowing to leverage small, sta
age datasets by pre-training the 2D backbone without th
of large video datasets. Additionally, it includes the adva
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network as it can be trained or fine-tuned on videos
d-to-end fashion. The use of the hybrid model would
tter representations of the lesions leading to an increase
tivity, as well as a decrease of short false positives while
cing bearable delays in the predictions.
ugh a segmentation network was employed, the ulti-

pplication was polyp detection. This allows to label
with a box around each lesion rather than with delin-
, therefore reducing the time and cost of the labelling.
er, following a polyp detection event, a polypectomy is
ed by resecting the lesion using tools with low maneu-
ty and precision. As opposed to segmentation metrics,
ise detection metrics enable a clinically relevant evalu-

ithout focusing on detailed delineations that would nev-
s be difficult to execute during polypectomies. Addi-
, from a usability point of view, overlaying a predicted
und a lesion allows a good view of the polyp without
ng it.
ore hybrid model was initially reported at MICCAI and

ed on internal data (Puyal et al., 2020). In this paper,
and the analysis of the hybrid architecture and its bene-
r new contributions include: (i) refinement of the pro-
pproach in order to determine the optimal temporal win-
e of the input video; (ii) new evaluation of the proposed
and the baseline on the publicly available SUN polyp

e (Misawa et al., 2020) in order to demonstrate gener-
n capabilities and provide the basis for comparison with
isting methods; (iii) proposal of novel user-centred met-
valuate the performance of the models.

hods

o-step temporal segmentation algorithm was developed
ure 1) (Puyal et al., 2020). The proposed architecture
able of learning a spatial representation through the 2D
g stage, allowing to apply transfer learning from larger
re varied 2D datasets. A 3D segmentation stage fol-
n order to generate temporally coherent polyp segmen-
asks.

ng training and validation pixelwise predictions and
ere used by converting the ground truth box annotations
ary masks. At inference time, the obtained masks were
lded and each separate detected region was replaced by
gle inscribing the detection, so that the obtained boxes
aluated on a object-wise level. Figure 2 shows an exam-
his process.

brid architecture

ybrid model contains an initial 2D stage for feature ex-
. Any CNN backbone could be utilized, although in
lementation a Resnet-101 architecture was used as the

r. The Resnet model included a convolutional layer, fol-
y four sets of building blocks containing 3, 4, 23 and 3

l blocks, sequentially (He et al., 2016). The last fully-
ted layer was removed, the output then consisting of a
048 feature maps per image.

Fig. 2. Example of inputs and outputs to the network. Images are a
tated by experts who provide a box ground truth around each polyp
left). The box is converted into a binary mask for training purposes
right). On inference the segmentation output for the polyp class is th
olded at 0.5 (bottom left) and each predicted region is converted to a
used for evaluation (bottom right).

The encoder is followed by a 3D segmentation stage to g
erate a final segmentation output. This 3D decoder is c
posed of one concatenation layer, two 3D convolutional lay
dropout, batch normalisation and an interpolation layer for
sampling (see Figure 1). This structure is an inflated ver
of the segmentation head from a Fully Convolutional Netw
(FCN) (Long et al., 2015), where “inflated” refers 2D la
expanded into 3D (Carreira and Zisserman, 2017). The
convolutional layer uses a kernel of size [d, 3, 3], where
the temporal depth or number of input images to the netw
with a padding and a stride of [1, 1, 1]. The second conv
tional layer uses the same stride, no padding, and a kerne
[d − 2, 3, 3] and a sigmoid activation layer, generating a
mentation output containing one channel per class with p
predictions y ∈ [0, 1]. The upsampling layer resizes each ch
nel from the segmentation output m to the size of the input
ages.

An input sample for the network consists of d consecu
video frames, d being configurable. The output of the mod
a segmentation map corresponding to the middle input im
(therefore constraining d to be an odd number). The input
ages are passed through the backbone, extracting a set of sp
features f p

i for the ith image and pth sample as depicted in
ure 1. The features set for an image have a shape of [2048,w
where w and h are the width and height of features, 32 ti
smaller than the original input images. The first layer of
segmentation head, namely the concatenation step, stacks
features f p

i for the images i ∈ {1, 2, ...d} from the same sam
p into a batch of 3D features. Consequently, the input to
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[d, 3, 448, 448] [d, 2048, 14, 14]

[d, 2048, 28, 28]

Auxiliary

segmentation head

Segmentation head

m
aux

m
main

. Training architecture showing the auxiliary segmentation head. Two
f feature maps are generated per input and inserted in the segmenta-
eads that generate two outputs m of identical size.

convolutional layer has a shape of [P, 2048, d,w, h], where
the number of samples in a batch. After the last layer in the
entation head, the network generates a probability map mp

ample, trained to predict the polyp in the image in the mid-
f the sample.
multiscale cross-entropy loss was used to train the model,
at the final pixelwise loss was defined as:

L = Lmain +Laux

= −
∑

c

c · log(ymain) −
∑

c

c · log(yaux) (1)

e Lmain was the main loss, Laux was the auxiliary loss,
0, 1} were the polyp and background ground truth classes,

ymain and yaux were each of the pixel predictions from the
entation outputs mmain and maux arising from the main and
iary heads, respectively. The final loss was obtained by
ging the pixelwise losses. As depicted in Figure 3, dur-

raining, an additional auxiliary segmentation head received
res from the third backbone building block. These feature
undergo fewer pooling steps, and therefore are twice the

of the main feature maps, as shown in Figure 3 for an im-
nput size of 448x448. After passing through the segmen-
n head both generated outputs have an equal size due to
nterpolation layer. This training strategy was adapted from
g et al., 2015) where three feature maps were used to com-
fine and coarse layers. In this work two feature maps were
instead to make the models less granular and more effi-
, and the losses were computed separately and combined,
r than combining the feature maps previous to computing
nal loss.
e model was trained and tested on an end-to-end fashion.
ain time, the inputs were randomised so an input batch of
dom samples contained N images, where N = d × P. At

ence time, a prediction was obtained for each video frame
nning the model in a sliding window fashion with a stride
e and d frames per sample. Runtime was improved by

ding each image once with the 2D feature extraction and
ng the generated features f p

i for each image to be used by
D segmentation head during the following d − 1 frames,
g time and computational resources.

Training strategy

ndom sampling of 5000 samples was performed on each
h to minimise overfitting, re-sampling at every new epoch.

Data augmentation was applied in such a way as to g
tee identical augmentations within samples. The aug
tion operations consisted of random affine transformatio
tation, translation and scaling) and random colour trans
tions (brightness, contrast and saturation). Finally, the i
were pre-processed by cropping out the video borders, fo
by resizing the images to 448 by 448 pixels, and an in
normalization step.

All available positive images were used during trainin
a data mining strategy was adopted for adding beneficia
tive images to the training set as seen in (Podlasek et al.,
An initial model was trained uniquely with positive samp
was used for inference on the available set of negative i
(from training procedures), which was shuffled randoml
ages yielding false positives were selected until reachin
of the new training set. This data mining strategy was se
empirically, after comparing it to random and semi-r
negative data selection.

Cross-entropy loss was used for the experiments and
grad for optimisation. Two output classes were defined:
and no-polyp presence. The epoch with the highest pixe
racy in the validation set was selected for testing. All m
were trained with PyTorch on an NVIDIA Tesla V100
32GB GPU. The batch size and sample size were adap
pending on the length of the input window d so that the
possible batch would fit in a single GPU’s memory. The
ence speed increased linearly with the number of input
d (the model predicted at 19 frames per second with d
the training GPU).

3. Experimental results

3.1. Datasets
The data was divided into two separate datasets: the

Dataset composed of consecutive video frames and the
Dataset composed of static images.

Video Dataset A series of 95 videos, from 95 patients,
was collected in University College London Hospital w
Olympus EVIS LUCERA endoscope under ethics RE
erence 18/EE/0148. A total of 234 histologically con
polyps were extracted into single-polyp video sequence
frames in these sequences were annotated by expert c
scopists by drawing bounding boxes around each polyp
frames showing polyps, captured in white light imaging
were included. The 25 full-length negative videos were
to the testing set, whereas the 70 procedures containing
were randomly split into training, validation and testin
The data was split on a per-procedure basis, where eac
cedure corresponded to a different patient, ensuring the
no patient data overlap between the sets of data. 51,426
from 173 polyps within 45 procedures were used for tr
and 2,152 frames from 8 polyps within 4 procedures wer
for validation. 20,943 frames from 21 procedures and 53
were used for testing, as well as 542,583 non-polyp frame
the 25 negative procedures.

SUN dataset Additionally, to test the generalisation c
ities of the model, the SUN Colonoscopy Video Databas
sawa et al., 2020) was used exclusively for testing. This
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Fig. 4. Examples on SUN database. Input images (top), Ground truth annotations (middle) and Hybrid model predictions (bottom).

valuation of baseline and proposed methods on the Video Dataset (pp and pf denote per-polyp and per-frame sensitivity, respectively). Object-
ere used for the assessment.

Method Sens Sens Spec Prec F1 Dice ∆ A-corr TC
(pp)(%) (pf )(%) (%) (%) (%) (%) (%) (%)

FCN (ImageNet) 100.00 83.56 83.04 88.11 85.78 69.68 20.50±16.16 79.55
Hybrid (FCN) 100.00 85.66 83.60 93.27 89.30 74.08 11.92±11.97 84.24
Hybrid (ImageNet) 100.00 86.14 85.32 93.45 89.65 73.48 12.24±11.74 84.64

posed by 49,136 polyp frames from video sequences
0 polyps, annotated with bounding boxes. It also in-

109,554 frames from non polyp scenes. Further infor-
about the data can be found in (Misawa et al., 2020).

4 shows example polyp images from this dataset.
e Dataset Static polyp images were gathered from two
: the publicly available Kvasir dataset (Jha et al., 2020)
ed of 1,000 polyp images and corresponding masks, and

et containing 833 polyp images collected from reports
niversity College London Hospital under ethics REC

ce 18/EE/0148 and annotated by expert colonoscopists
ing bounding boxes around polyps. This set of 1,833

ght, polyp images was solely used for training purposes.

mparison and evaluation metrics

der to assess the temporal benefits of the model, its com-
2D network, an FCN with a Resnet101 backbone, was
ented (Long et al., 2015). Whereas the backbone used
ntical to the one in the hybrid model, the segmentation
as a deflated version of the hybrid one. In this case,
volutional, batch normalisation and pooling layers were
d by their 2D corresponding versions, maintaining all
arameters. During training, an auxiliary segmentation
as used in the same manner as for the hybrid network.
ining strategy and parameters for the baseline model
pt identical to the hybrid model, when possible, to en-

mparison fairness.

Object-wise metrics were used for evaluation, namely se
tivity, precision, and F1-score on videos with polyps, and sp
ficity on non-polyp videos. Further implementation details
available in (Bernal et al., 2017). Predicted polyp objects w
denoted by a rectangle enclosing pixels classified as polyp
threshold of 0.5 (see Figure 2). This allowed comparison w
the ground truth annotations of rectangular bounding bo
Dice score was reported on true positive frames to assess
quality of the boxes overlap. Per-polyp sensitivity was also
ported, considering a true positive when at least one frame
correctly detected for each polyp.

In order to determine the consistency of the predictions o
consecutive frames, temporal coherence (TC) was compute
defined in (Bernal et al., 2017). Additionally, auto-correla
of masks was measured to assess both temporal and spatial
relation between two consecutive mask predictions. The a
correlation for a given pixel position over a sequence of m
is defined as:

r =
∑N−k

i=1 (Yi − Ȳ)(Yi+1 − Ȳ)
∑N

i=1(Yi − Ȳ)2

where Yi is the value of a pixel in a certain position, and
the average of the pixel values in that position over the en
sequence. After obtaining a 2D vector with auto-correla
values per sequence, the average over the x and y axis was c
puted. The absolute difference with respect to the ground t
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correlation was computed, and mean and standard devia-
were reported.
hile assessing object-wise metrics on all test frames is an
rtant performance metric, so is measuring the delay when
detecting a polyp. Shorter delays will have a higher influ-
on subtle polyps detection that would be otherwise missed.
detection delay was measured with two metrics namely the
to detection and the network reaction time. The network
ion time ∆N measures the time needed for a polyp to be
ted and was defined by the time between its first appear-
(tapp) and its first detection (tdet), averaged over all polyps

e test sequences.

∆N =
1
P

∑

P

tapp − tdet (3)

e time to detection ∆d was defined as the time elapsed be-
n between the first appearance of a polyp and its display
e user, taking into account the additional latency induced
g real-time inference, where for an input of 11 frames, it
d be necessary to wait to acquire the following 5 frames to
a prediction on the central image.

∆d =
1
P

∑

P

tapp − tdet +
d
2
+ 1 (4)

e proposed architecture was additionally evaluated on an
nal dataset. Results in this dataset were computed ac-
ing to object-wise metrics, as well as image-wise met-
described in (Misawa et al., 2020) to allow for compari-

ith other published results. In (Misawa et al., 2020), re-
were computed per frame, where a prediction for a frame
deemed positive if at least one box was predicted in the
e. This type of image-wise metrics yield higher results
object-wise metrics (described above), as a frame will be
ed as a true positive even when the detection does not

lap with the ground truth polyp. The second difference in
etrics is related to the per-polyp sensitivity, in that, for

the external database, a video sequence is deemed positi
least half of its frames are predicted as positive.

3.3. Results and analysis

3.3.1. 2D / Hybrid comparison
To establish a baseline, a 2D FCN was trained initi

the backbone weights on ImageNet - referred to as FC
ageNet). The training set for this model consisted of i
from the Video Dataset training set and the full Image D
Furthermore, 10,000 negative images from the training
dures from the Video Dataset were added to the train
using the strategy previously described, by means of a
model formerly trained on positive images exclusively
respondingly, a hybrid model was trained on the train
from the Video Dataset and 10,000 negative images, fol
the negative mining strategy. The Image Dataset was ex
as the hybrid architecture needs consecutive frames as
The hybrid network was trained using the weights from
(ImageNet) to initialise and freeze the backbone, therefo
training the segmentation head - this experiment was
Hybrid (FCN). An input temporal depth d of five fram
used. Sharing a common backbone, it was possible to
evaluate the effect of the 3D segmentation head. The pro
model was also trained initialising the backbone from Ima
weights and training the full network. This experiment w
ferred to as Hybrid (ImageNet).

Table 1 depicts the associated results when tested
Video Dataset internal testing set. When comparing FC
ageNet) and Hybrid (FCN) it can be observed that the in
ration of the 3D component caused a general increase in
mance, particularly in terms of temporal consistency m
The temporal coherence increased by 5% showing that p
tions were more consistent on consecutive frames. The en
in temporal correlation was supported by a decrease of
the difference between the auto-correlation for the hybr
dictions and the ground truth masks, indicating that conse
predicted masks presented a higher similarity. Additiona

. Results on a polyp sequence showing (top) the box dice overlap with the ground truth and (bottom) segmentation outputs for the FCN (b
id (green) before box conversion postprocessing. The segmentation outputs are shown in blue for the FCN and green for the Hybrid mo
retation of the references to colour, the reader is referred to the web version of this article).
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t

(a) (b)

t

rediction timelines for a non-polyp procedure mapped onto a colon model for (a) Hybrid (ImageNet) and (b) FCN (ImageNet), where or
enote false positives. Network outputs are shown as an overlay on a video section.

ction of temporal components led to an increase of both
ity and specificity. This was achieved by a reduction of
lse positives and negatives in both hybrid implementa-
he gain in sensitivity by the hybrid model came accom-
by a considerable increase of ∼ 5% in the dice score for
d polyps, showing that the quality of the segmentation
benefited from the temporal component. Figure 5(top)
he dice score over a polyp sequence for the FCN (Ima-
and the Hybrid (FCN) models, where it can be observed
dice score over consecutive polyp frames is more sta-

the hybrid model. From the segmentation examples in
5(bottom) it can be noted that both models generated
outputs on good quality images. However, on blurry
the FCN yielded false negatives while the hybrid model
fully used information from surrounding frames.

Hybrid (ImageNet) experiment was trained from Ima-
eights, achieving the highest sensitivity and specificity,
and 85.32% respectively (see Table 1). It also showed
est F1-score, demonstrating that it was possible to ob-
antages from the hybrid architecture over its 2D coun-
even when using a lower amount of training data. Our

architecture successfully offered temporal benefits with-
rfitting, a major disadvantage of 3D models. The re-
r Hybrid (ImageNet) were comparable to Hybrid (FCN),
g similar increases in the quality of the segmentation
as well as the temporal consistency metrics. Figure 6
he per frame predictions on one of the non-polyp full
copic withdrawals from the testing set, where it can be
at the number of false positives is reduced throughout
cedure with the hybrid network compared to the FCN.
h the mapping to a 3D model of the colon was not fully
, it gave an indication of the clinical importance of re-
the false positives, as too many false alarms can reduce
ility of a clinical system.

ta benchmark was performed to show the closest com-
possible between architectures. Negative mining was
select non-polyp training frames for experiments re-

ported in Table 1, hence the training images used were
identical between experiments. Table 2 shows the performa
of the previous experiments when trained uniquely on posi
data, allowing for a better comparison between the FCN
our proposed architecture. Three models were trained as
lows: (i) A 2D FCN was trained on the Video and Image tr
ing datasets, initialising its backbone from ImageNet weig
(ii) A hybrid model was trained initialising the backbone f
this FCN (ImageNet), and training exclusively the segmenta
head. (iii) A hybrid model was also trained from Image
without freezing any layers. It is important to note that th
networks were trained exclusively on positive samples and f
positives were to be expected. The results presented in Tab
show that, when pre-training with FCN (ImageNet), the
posed model improved the performance considerably in al
pects when compared to FCN. Particularly, a 20.19% ris
specificity was achieved, along with an important improvem
in the auto-correlation of the predictions, showing that the
brid architecture was able to get rid of false short positives w
out training on negative images. However, the hybrid model
tialised from ImageNet, Hybrid (ImageNet), yielded poore
sults when compared to the FCN ImageNet). This could be
to the limited amount of training data used in this instance,
Hybrid (ImageNet) also lacking the Image dataset from its tr
ing set. The results might indicate the tendency of the hy
architecture to overfit when reducing the dataset excessive
common problem on 3D architectures. Nevertheless this p
lem can be solved as the proposed architecture was show
successfully allowing to pre-train on still images while ben
ing from the temporal stability provided by the 3D segme
tion head.

3.3.2. External testing
The models were tested on a completely external, publ

available dataset (Misawa et al., 2020) to assess their ge
alisation capabilities as well as to allow for external com
ison, and the results were presented in Table 3. When te
on the SUN dataset our model achieves 86.99% sensitivity
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2. Evaluation of network performance when negative data is not included in the training set. Results are reported on the test set from th
et (pp and pf denote per-polyp and per-frame sensitivity, respectively). Object-wise metrics were used for the assessment.

Method Sens Sens Spec Prec F1 Dice ∆ A-corr TC
(pp) (%) (pf ) (%) (%) (%) (%) (%) (%) (%)

FCN (ImageNet) 100.00 87.77 54.02 87.81 87.80 72.22 17.12±15.18 84.58
Hybrid (FCN) 100.00 88.88 74.18 92.73 90.76 75.06 9.77±9.77 87.78
Hybrid (ImageNet) 100.00 85.79 44.54 87.45 86.61 68.27 10.89±11.25 84.42

3. Evaluation on the SUN polyp database (pp and pf denote per-polyp
er-frame sensitivity, respectively). † denotes metrics from (Misawa
2020)

ethod pp Sens
(%)

pf Sens
(%)

Spec
(%) F1 (%)

OLOv3
isawa

t al., 2020) †
98.0 90.5 93.7 -

CN † 96.0 91.38 85.61 87.49
ybrid (ours) 93.0 86.99 90.41 87.58

CN 100.0 89.46 76.50 80.80
ybrid (ours) 97.0 84.71 84.57 83.29

1% specificity, which is a higher performance than on the
o Dataset reported on Table 1 (86% sensitivity and 85%
ificity). However, when evaluated with our object-wise
ics (defined in Section 3.2), our model achieves an 84.71%
tivity and 84.57% specificity, marginally lower than on our
g set. This shows that the hybrid model is able to main-

the test set performance on a completely different dataset
eneralises adequately. Nevertheless, the small loss in per-

e sensitivity is translated in a drop of the per-polyp sensi-
, where seven polyps yield false negatives on half or more
eir frames. Additionally, the results on the SUN database
ompared to other published results on this data. The re-
from Misawa et al. (Misawa et al., 2020) present a 3%

er sensitivity and specificity when compared to our hybrid
el, and a 5% higher per polyp sensitivity. It is important
te that the model from (Misawa et al., 2020) was trained
images from 5 hospitals, one of them being Showa Uni-
ty Northern Yokohama Hospital, where the SUN dataset
acquired. Even though there is no patient overlap, the do-
of the SUN dataset is likely to be within the distribution

eir training set (due to factors such as the same endoscopic
e, similar colonoscopic techniques, colonoscopists over-
imilar patient demographics, etc.). Finally, the FCN base-

model was also tested on the SUN database. It showed a
er sensitivity and a lower specificity when compared to the
id model, making it difficult to compare both architectures.
ever, the F1-score was higher for the hybrid model, show-
hat this architecture obtained a better sensitivity/specificity
ce, possibly due to having learnt a better data representa-
When computing the results with our per-lesion metrics,

ensitivity and specificity drop to 89.46% and 76.50% for
CN model, showing that it has a poorer per-frame preci-

sion, yielding false positive detections on polyp frames.
all, the proposed hybrid model maintains its performance
tested on a dataset with a new distribution, generalisin
ter than its 2D counterpart. When compared to (Misawa
2020) the performance is found to be comparable, demo
ing the generalisation capabilities and robustness of the
architecture.

3.3.3. Input sequence length analysis
Previously presented experiments in Tables 1 and 2

trained with a temporal depth d = 5, meaning that eac
ple consisted of five consecutive frames. The parameter
chosen empirically based on the average speed of an end
in the colon and the frame rate of the videos used (25fps)
ples of five frames where selected to ensure enough varia
appearance while conserving the same scene within the s
Following the experiments presented in Section 3.3.1 to
tain the benefits of the hybrid architecture, further invest
was implemented to find the optimal depth for the 3D s
the network. Several models were trained with the same p
eters as for the Hybrid (ImageNet) model from Table 1. F
shows the performance of the hybrid model when traine
different input sequence length, or temporal depth d,
The input sequence length ranged from 3 frames, the min
possible temporal depth, to 41 frames, the maximum p
length allowed by the capacity of the GPU, which corre
to 1.64 seconds of video feed, enough time for the sc
change radically. A first bar with a temporal depth d =
included, corresponding to the FCN (ImageNet) baseline

Figure 7 shows the performance of the different inp
experiments in terms of sensitivity, specificity and F1-sc
defined in Section 3.2, as well as for time to detection. A
be observed the overall performance is consistently hig
experiments where the hybrid architecture is used (d > 1
the exception of d = 41. In this last experiment the se
ity drops to 74%, probably because the input samples ma
the polyp frames. The results become challenging to in
when comparing the temporal depth for different hybrid
iments. Despite all efforts to maintain reproducibility be
experiments, it is important to note that the changes on th
frames modify the order in which data is loaded during tr
generating random differences and thus small variations
formance cannot be confidently attributed to the input
The sensitivity, specificity and F1-Score metrics are de
cumulatively in Figure 7 to ease the visualisation. When
those three metrics into account, the results seem to indi
increase in performance with longer inputs (between 3 a
However, the improvements found were small. For instan
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valuation of the hybrid architecture on the Video Dataset when trained and tested with different input lengths, or temporal depths d. The sta
w the performance (left axis) and the line plot shows the average delay to first detect a polyp (right axis). (For interpretation of the referenc
e reader is referred to the web version of this article.)

re was 90% for both the highest performing experiment
5) and the one with the shortest inputs d = 3. Addi-
, the performance could increase with larger temporal
because of the nature of the data. Inherently, the Video
t is biased towards long polyp scenes. In this dataset,

polyp is found, it stays in the scene for hundreds of
for optical inspection. Similarly, there are long intervals
rocedures where there are no polyp appearances. In this

odels trained for longer input samples would benefit
e stability of the data.

e other hand, longer input temporal depths could nega-
ffect changes in the video, namely when a polyp appears
pears from the scene. Arguably, the highest benefit of
detection model resides in detecting polyps that would
ed otherwise, hence of short appearance in the colono-
video. It is subsequently important to introduce time to
n as a metric. As shown in Figure 7, the delay when

tecting a polyp tends to increase the longer the inputs
rticularly the intrinsic delay from the model, the net-
action time, increases with longer input sizes up to a
f 9.54 frames for d = 41. Additionally, longer inputs
increase the time to detection, leading to larger user-

ed delays (e.f. 29.54 frames for d = 41). It is worth
ing that different sensitivity/specificity balances are ob-

with different models, although they present a similar
re. The time to detection is negatively correlated to the
ity, which might explain why experiments with 7, 9 and
es have a higher delay.

all, benefits can be drawn from the hybrid architecture

even with short input samples. Longer inputs introduce a
lay when detecting polyps for the first time, but they also s
to bring a increase in performance. However, it would be
essary to test these models on prospective data to objecti
evaluate its effect on missed polyps.

4. Discussion and Conclusion

In this paper a novel hybrid 2D/3D segmentation CNN
chitecture for polyp detection in colonoscopic videos was
sented. It was shown that the hybrid network was able to
compass the benefits from a 2D architecture, namely succ
ful spatial representation learning, transfer learning capabil
to pretrain from curated datasets of still images and gene
isation abilities despite being trained on reduced amount
data. The proposed architecture performed better than its
counterpart when trained with less data. It was additionally
vealed that a great performance boost could be obtained f
pretraining on still images when training the hybrid mode
less data. This is particularly beneficial for clinical applicati
where large video datasets are challenging to collect and he
still image data may be needed to provide strong and div
representation of the spatial domain. Furthermore, the m
was shown to generalise better to an external dataset and it
hibited similar performance to results published by the st
that released said dataset. In the proposed method, the 3D
mentation seamlessly incorporated temporal correlation in
results encapsulating learning of spatio-temporal informa
from smaller video datasets. We obtained an increase ac
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erformance metrics, particularly in the temporal consis-
of the results. Ablation studies comparing training the full

el against solely updating the segmentation head demon-
d the benefit of the 3D decoding. Additional analysis as-
d the effect of different temporal window sizes indicating
benefits could be obtained even with shorter inputs, with
dded benefit of a lower delay to first detect a polyp.
erall the hybrid architecture was validated on videos from

atients, including 25 unaltered, full-length negative proce-
s, offering an increase in performance along with higher
ty segmentation potential. Moreover, the model was evalu-
on a publicly available dataset containing 100 polyps, dis-
ng promising results. All in all the hybrid network suc-
ully harnessed temporal information from videos to han-
hort inconsistencies in the predictions hence showing a in-
ed suitability for clinical translation. The model was eval-
in video data and user centred metrics were used such as

to detection, breaching the evaluation gap between “lab”
hospital”. The main limitation of the proposed solution is

ed to the introduced delay. The model has longer compu-
n time than a 2D network, which is added to a longer in-
ic network reaction time and the fact that future frames are
ed to compute a prediction on the current frame, yielding
verall time to first detection. Despite the presented archi-
re showing similar performance to the state-of-the-art on
ternal dataset, improvements in specificity are needed for
cessful translation to the clinical setup. Although the issue
urrently be minimised by post-processing techniques to re-
false positives, it leaves scope for improvement. Although
odel was assessed on video data, bringing the evaluation
r to a real clinical setup, video datasets are biased towards

er sequences on found polyps and shorter appearances in
ideo from missed polyps. Future work includes evaluating
ystem on prospective data to fully analyse the effect of the

of the hybrid architecture. Furthermore, it would be of
est to exploit the modularity of the Hybrid 2D/3D architec-
and evaluate its performance with different backbones. In-
oration of depth and colon mapping information (Rau et al.,
; Liu et al., 2018; Armin et al., 2018; Mathew et al., 2020;
et al., 2021; Cheng et al., 2021) can be exploited to com-
polyp detection with automated reporting tools, thus open-
oors for polyp finding, referral and surveillance.
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