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Colonoscopy is the gold standard for early diagnosis and pre-emptive treatment of col-
orectal cancer by detecting and removing colonic polyps. Deep learning approaches to
polyp detection have shown potential for enhancing polyp detection rates. However, the
majority of these systems are developed and evaluated on static images from colono-
scopies, whilst in clinical practice the treatment is performed on a real-time video feed.
Non-curated video data remains a challenge, as it contains low-quality frames when
compared to still, selected images often obtained from diagnostic records. Neverthe-
less, it also embeds temporal information that can be exploited to increase predictions
stability. A hybrid 2D/3D convolutional neural network architecture for polyp segmen-
tation is presented in this paper. The network is used to improve polyp detection by
encompassing spatial and temporal correlation of the predictions while preserving real-
time detections. Extensive experiments show that the hybrid method outperforms a 2D
baseline. The proposed architecture is validated on videos from 46 patients and on the
publicly available SUN polyp database. A higher performance and increased general-
isability indicate that real-world clinical implementations of automated polyp detection
can benefit from the hybrid algorithm and the inclusion of temporal information.

© 2022 Elsevier B. V. All rights reserved.

1. Introduction

are highly variable, with high inter-operator disparities (Cor-
ley et al., 2014) as well as intra-operator dependency, where

Colorectal cancer (CRC) is one of the most common types
of cancer worldwide, accounting for 10% of all forms of cancer
(Bray et al., 2018). Early detection, diagnosis and treatment can
effectively reduce CRC incidence and mortality (Van Rijn et al.,
2006). Colonoscopy is the gold standard screening procedure
for early CRC detection, during which the bowel is visually in-
spected for polyps and cancer using an endoscope (Rex et al.,
2009). The risk of interval cancer was found to decrease by
3.0% with each 1.0% increase in the adenoma detection rate
(Corley et al., 2014). Unfortunately, colonoscopy outcomes
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detection rates decline with fatigue (Leufkens et al., 2012).

Computer-aided detection (CAD) systems to assist endo-
scopists in polyp detection tasks have been widely researched
in the last 30 years. Recently, great progress has been reported
(Hassan et al., 2019; Wang et al., 2018a,b) particularly when us-
ing approaches based on convolutional neural networks (CNNs)
(Brandao et al., 2018, 2017; Tajbakhsh et al., 2015; Wang et al.,
2018b). These approaches have reported robust and promis-
ing results (Ahmad et al., 2019a) and multiple clinical stud-
ies and randomised control trials have begun to evaluate CAD
technology as well as to consider ethical and regulatory aspects
(Su et al., 2020; Ahmad et al., 2019b). Notably, commercial
CAD systems have recently emerged with technology based
on deep learning such as GI Genius (Medtronic,USA) (Repici
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et al., 2020), CADDIE (Odin Vision, UK) (Odin Vision, 2020),
CAD EYE (FujiFilm, Japan) (Weigt et al., 2020), DISCOVERY
(Pentax Medical, Japan) (Medical, 2019), AI4G (AI4GI Corp.,
Canada) and (Olympus America, USA) (Chahal and Byrne,
2020), or EndoBrain (Cybernet Systems, Japan) (Kudo et al.,
2020). However, one of the main challenges when developing
deep learning models is the limited availability of labelled data
because full length colonoscopy videos are not usually recorded
clinically and when recorded they are logistically challenging
to handle (Ahmad et al., 2020). On the contrary, still frames
from regions of interest within the procedures are routinely
stored in clinical reports enabling still image polyp databases
(Bernal et al., 2017; Jha et al., 2020). As a result, while most
current CAD systems have been developed using still images,
they are translated to endoscopy units where real time videos
are used to detect polyps. Videos introduce difficulties as they
can present poor visibility and variability in polyp appearance
that might lead to a lack of temporal coherence in consecutive
frames yielding short, false predictions (Bernal et al., 2017).
It is therefore of paramount importance to demonstrate perfor-
mance on videos and address model behaviour and stability in
practical conditions.

Endoscopic videos can be exploited to increase the temporal
correlation in the predictions by extracting temporal represen-
tations. This line of thought has previously been employed for
videos by the means of recurrent neural networks (RNN), such
as long short-term memory, 3D CNNs, or two-stream models,
demonstrating state-of-the-art performance for action recogni-
tion tasks (Carreira and Zisserman, 2017). Similarly, the use
of temporal information in endoscopic CAD has been studied
for different approaches. For instance, (Ma et al., 2020) show

that temporal consistency can be used to reliably detect true
positive predictions and apply it for automatic data labelling.
Further, temporal architectures have been exploited such as in
(Eelbode et al., 2019), where the authors implement an RNN on
top of a CNN to improve polyp segmentation accuracy. Like-
wise, dense 3D networks have been explored such as C3D to
classify endoscopic frames containing polyps (Itoh et al., 2018;
Misawa et al., 2018; Itoh et al., 2019), a 3D fully convolutional
network for polyp segmentation (Yu et al., 2016) or a 3D CNN
for polyp structures identification (Liu et al., 2020). Despite the
benefits of 3D architectures, a major drawback of this type of
models is the need of a large number of training samples, while
medical data collection remains a challenge. Various strategies
have been proposed to include temporal information leveraging
access to a limited number of videos. For example, in (Qadir
et al., 2019) a false positive reduction stage was appended to a
polyp detection model showing an increase in specificity while
limiting the loss in sensitivity. Tracking algorithms can be com-
bined with detection CNNs to temporally refine results but the
re-initialisation of the tracker can be problematic (Zhang et al.,
2018; Poon et al., 2020). Recently an approach fusing two CNN
streams, one receiving the input frame, and the other one opti-
cal flow information, was reported but can suffer from errors in
the optical flow estimation (Zhang et al., 2019).

This paper presents a hybrid 2D/3D architecture for polyp
segmentation in colonoscopy videos. This network combines
2D spatial representations with a third temporal dimension in a
hybrid manner. The novel architecture presents the benefits of
traditional 2D networks, allowing to leverage small, static im-
age datasets by pre-training the 2D backbone without the need
of large video datasets. Additionally, it includes the advantages
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Fig. 1. Architecture of the proposed hybrid segmentation network for a temporal depth or input size of d = 5 frames. A set of features f is generated for
each input image x with the 2D encoder (depicted in green). d feature sets are given to the 3D decoder (depicted in blue) to generate an output segmentation

m.
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of a 3D network as it can be trained or fine-tuned on videos
in an end-to-end fashion. The use of the hybrid model would
yield better representations of the lesions leading to an increase
in sensitivity, as well as a decrease of short false positives while
introducing bearable delays in the predictions.

Although a segmentation network was employed, the ulti-
mate application was polyp detection. This allows to label
polyps with a box around each lesion rather than with delin-
eations, therefore reducing the time and cost of the labelling.
Moreover, following a polyp detection event, a polypectomy is
performed by resecting the lesion using tools with low maneu-
verability and precision. As opposed to segmentation metrics,
object-wise detection metrics enable a clinically relevant evalu-
ation without focusing on detailed delineations that would nev-
ertheless be difficult to execute during polypectomies. Addi-
tionally, from a usability point of view, overlaying a predicted
box around a lesion allows a good view of the polyp without
occluding it.

The core hybrid model was initially reported at MICCAI and
evaluated on internal data (Puyal et al., 2020). In this paper,
we expand the analysis of the hybrid architecture and its bene-
fits. Our new contributions include: (i) refinement of the pro-
posed approach in order to determine the optimal temporal win-
dow size of the input video; (ii) new evaluation of the proposed
method and the baseline on the publicly available SUN polyp
database (Misawa et al., 2020) in order to demonstrate gener-
alisation capabilities and provide the basis for comparison with
other existing methods; (iii) proposal of novel user-centred met-
rics to evaluate the performance of the models.

2. Methods

A two-step temporal segmentation algorithm was developed
(see Figure 1) (Puyal et al., 2020). The proposed architecture
was capable of learning a spatial representation through the 2D
encoding stage, allowing to apply transfer learning from larger
and more varied 2D datasets. A 3D segmentation stage fol-
lowed in order to generate temporally coherent polyp segmen-
tation masks.

During training and validation pixelwise predictions and
losses were used by converting the ground truth box annotations
into binary masks. At inference time, the obtained masks were
thresholded and each separate detected region was replaced by
a rectangle inscribing the detection, so that the obtained boxes
were evaluated on a object-wise level. Figure 2 shows an exam-
ple of this process.

2.1. Hybrid architecture

The hybrid model contains an initial 2D stage for feature ex-
traction. Any CNN backbone could be utilized, although in
our implementation a Resnet-101 architecture was used as the
encoder. The Resnet model included a convolutional layer, fol-
lowed by four sets of building blocks containing 3, 4, 23 and 3
residual blocks, sequentially (He et al., 2016). The last fully-
connected layer was removed, the output then consisting of a
set of 2048 feature maps per image.

Fig. 2. Example of inputs and outputs to the network. Images are anno-
tated by experts who provide a box ground truth around each polyp (top
left). The box is converted into a binary mask for training purposes (top
right). On inference the segmentation output for the polyp class is thresh-
olded at 0.5 (bottom left) and each predicted region is converted to a box
used for evaluation (bottom right).

The encoder is followed by a 3D segmentation stage to gen-
erate a final segmentation output. This 3D decoder is com-
posed of one concatenation layer, two 3D convolutional layers,
dropout, batch normalisation and an interpolation layer for up-
sampling (see Figure 1). This structure is an inflated version
of the segmentation head from a Fully Convolutional Network
(FCN) (Long et al., 2015), where “inflated” refers 2D layers
expanded into 3D (Carreira and Zisserman, 2017). The first
convolutional layer uses a kernel of size [d, 3, 3], where d is
the temporal depth or number of input images to the network,
with a padding and a stride of [1,1,1]. The second convolu-
tional layer uses the same stride, no padding, and a kernel of
[d —2,3,3] and a sigmoid activation layer, generating a seg-
mentation output containing one channel per class with pixel
predictions y € [0, 1]. The upsampling layer resizes each chan-
nel from the segmentation output m to the size of the input im-
ages.

An input sample for the network consists of d consecutive
video frames, d being configurable. The output of the model is
a segmentation map corresponding to the middle input image
(therefore constraining d to be an odd number). The input im-
ages are passed through the backbone, extracting a set of spatial
features f” for the iy, image and p,, sample as depicted in Fig-
ure 1. The features set for an image have a shape of [2048, w, h],
where w and & are the width and height of features, 32 times
smaller than the original input images. The first layer of the
segmentation head, namely the concatenation step, stacks the
features fip for the images i € {1, 2, ...d} from the same sample
p into a batch of 3D features. Consequently, the input to the
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Fig. 3. Training architecture showing the auxiliary segmentation head. Two
sets of feature maps are generated per input and inserted in the segmenta-
tion heads that generate two outputs m of identical size.

first convolutional layer has a shape of [P, 2048, d, w, h], where
P is the number of samples in a batch. After the last layer in the
segmentation head, the network generates a probability map m,,
per sample, trained to predict the polyp in the image in the mid-
dle of the sample.

A multiscale cross-entropy loss was used to train the model,
so that the final pixelwise loss was defined as:

L= -Ema[n + Laux
= - Z C: log(_))main) - Z C: log(yaux) (1)

c

where L, was the main loss, £,,, was the auxiliary loss,
¢ = {0, 1} were the polyp and background ground truth classes,
and Y4, and y,, were each of the pixel predictions from the
segmentation outputs m1,,,;, and m,,, arising from the main and
auxiliary heads, respectively. The final loss was obtained by
averaging the pixelwise losses. As depicted in Figure 3, dur-
ing training, an additional auxiliary segmentation head received
features from the third backbone building block. These feature
maps undergo fewer pooling steps, and therefore are twice the
size of the main feature maps, as shown in Figure 3 for an im-
age input size of 448x448. After passing through the segmen-
tation head both generated outputs have an equal size due to
the interpolation layer. This training strategy was adapted from
(Long et al., 2015) where three feature maps were used to com-
bine fine and coarse layers. In this work two feature maps were
used instead to make the models less granular and more effi-
cient, and the losses were computed separately and combined,
rather than combining the feature maps previous to computing
the final loss.

The model was trained and tested on an end-to-end fashion.
At train time, the inputs were randomised so an input batch of
P random samples contained N images, where N = d X P. At
inference time, a prediction was obtained for each video frame
by running the model in a sliding window fashion with a stride
of one and d frames per sample. Runtime was improved by
encoding each image once with the 2D feature extraction and
storing the generated features f for each image to be used by
the 3D segmentation head during the following d — 1 frames,
saving time and computational resources.

2.2. Training strategy

Random sampling of 5000 samples was performed on each
epoch to minimise overfitting, re-sampling at every new epoch.

Data augmentation was applied in such a way as to guaran-
tee identical augmentations within samples. The augmenta-
tion operations consisted of random affine transformations (ro-
tation, translation and scaling) and random colour transforma-
tions (brightness, contrast and saturation). Finally, the images
were pre-processed by cropping out the video borders, followed
by resizing the images to 448 by 448 pixels, and an intensity
normalization step.

All available positive images were used during training, and
a data mining strategy was adopted for adding beneficial nega-
tive images to the training set as seen in (Podlasek et al., 2021).
An initial model was trained uniquely with positive samples and
was used for inference on the available set of negative images
(from training procedures), which was shuffled randomly. Im-
ages yielding false positives were selected until reaching 15%
of the new training set. This data mining strategy was selected
empirically, after comparing it to random and semi-random
negative data selection.

Cross-entropy loss was used for the experiments and Ada-
grad for optimisation. Two output classes were defined: polyp
and no-polyp presence. The epoch with the highest pixel accu-
racy in the validation set was selected for testing. All models
were trained with PyTorch on an NVIDIA Tesla V100 DGXS
32GB GPU. The batch size and sample size were adapted de-
pending on the length of the input window d so that the largest
possible batch would fit in a single GPU’s memory. The infer-
ence speed increased linearly with the number of input frames
d (the model predicted at 19 frames per second with d = 5 on
the training GPU).

3. Experimental results

3.1. Datasets

The data was divided into two separate datasets: the Video
Dataset composed of consecutive video frames and the Image
Dataset composed of static images.

Video Dataset A series of 95 videos, from 95 patients, which
was collected in University College London Hospital with an
Olympus EVIS LUCERA endoscope under ethics REC ref-
erence 18/EE/0148. A total of 234 histologically confirmed
polyps were extracted into single-polyp video sequences. The
frames in these sequences were annotated by expert colono-
scopists by drawing bounding boxes around each polyp. Only
frames showing polyps, captured in white light imaging mode
were included. The 25 full-length negative videos were added
to the testing set, whereas the 70 procedures containing polyps
were randomly split into training, validation and testing sets.
The data was split on a per-procedure basis, where each pro-
cedure corresponded to a different patient, ensuring there was
no patient data overlap between the sets of data. 51,426 frames
from 173 polyps within 45 procedures were used for training
and 2,152 frames from 8 polyps within 4 procedures were used
for validation. 20,943 frames from 21 procedures and 53 polyps
were used for testing, as well as 542,583 non-polyp frames from
the 25 negative procedures.

SUN dataset Additionally, to test the generalisation capabil-
ities of the model, the SUN Colonoscopy Video Database (Mi-
sawa et al., 2020) was used exclusively for testing. This dataset
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Fig. 4. Examples on SUN datab

Input i

(top), Ground truth annotations (middle) and Hybrid model predictions (bottom).

Table 1. Evaluation of baseline and proposed methods on the Video Dataset (pp and pf denote per-polyp and per-frame sensitivity, respectively). Object-wise

metrics were used for the assessment.

Method Sens Sens Spec  Prec F1 Dice A A-corr TC
wp)(%) @ %) () (%) (B) (%) (%) (%)
FCN (ImageNet) 100.00 8356 83.04 88.11 85.78 69.68 | 20.50+16.16 79.55
Hybrid (FCN) 100.00  85.66 83.60 93.27 89.30 74.08 | 11.92+11.97 84.24
Hybrid (ImageNet) | 100.00  86.14 85.32 9345 89.65 73.48 | 12.24x11.74 84.64

is composed by 49,136 polyp frames from video sequences
from 100 polyps, annotated with bounding boxes. It also in-
cludes 109,554 frames from non polyp scenes. Further infor-
mation about the data can be found in (Misawa et al., 2020).
Figure 4 shows example polyp images from this dataset.
Image Dataset Static polyp images were gathered from two
sources: the publicly available Kvasir dataset (Jha et al., 2020)
composed of 1,000 polyp images and corresponding masks, and
a dataset containing 833 polyp images collected from reports
from University College London Hospital under ethics REC
reference 18/EE/0148 and annotated by expert colonoscopists
by drawing bounding boxes around polyps. This set of 1,833
white light, polyp images was solely used for training purposes.

3.2. Comparison and evaluation metrics

In order to assess the temporal benefits of the model, its com-
parable 2D network, an FCN with a Resnet101 backbone, was
implemented (Long et al., 2015). Whereas the backbone used
was identical to the one in the hybrid model, the segmentation
head was a deflated version of the hybrid one. In this case,
3D convolutional, batch normalisation and pooling layers were
replaced by their 2D corresponding versions, maintaining all
other parameters. During training, an auxiliary segmentation
head was used in the same manner as for the hybrid network.
The training strategy and parameters for the baseline model
were kept identical to the hybrid model, when possible, to en-
sure comparison fairness.

Object-wise metrics were used for evaluation, namely sensi-
tivity, precision, and F1-score on videos with polyps, and speci-
ficity on non-polyp videos. Further implementation details are
available in (Bernal et al., 2017). Predicted polyp objects were
denoted by a rectangle enclosing pixels classified as polyp at a
threshold of 0.5 (see Figure 2). This allowed comparison with
the ground truth annotations of rectangular bounding boxes.
Dice score was reported on true positive frames to assess the
quality of the boxes overlap. Per-polyp sensitivity was also re-
ported, considering a true positive when at least one frame was
correctly detected for each polyp.

In order to determine the consistency of the predictions over
consecutive frames, temporal coherence (TC) was computed as
defined in (Bernal et al., 2017). Additionally, auto-correlation
of masks was measured to assess both temporal and spatial cor-
relation between two consecutive mask predictions. The auto-
correlation for a given pixel position over a sequence of masks
is defined as:

SVRY - D) (Y - 1)
r= —
MY - 7)?

(@)

where Y; is the value of a pixel in a certain position, and ¥ is
the average of the pixel values in that position over the entire
sequence. After obtaining a 2D vector with auto-correlation
values per sequence, the average over the x and y axis was com-
puted. The absolute difference with respect to the ground truth
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auto-correlation was computed, and mean and standard devia-
tion were reported.

While assessing object-wise metrics on all test frames is an
important performance metric, so is measuring the delay when
first detecting a polyp. Shorter delays will have a higher influ-
ence on subtle polyps detection that would be otherwise missed.
This detection delay was measured with two metrics namely the
time to detection and the network reaction time. The network
reaction time Ay measures the time needed for a polyp to be
detected and was defined by the time between its first appear-
ance (t,pp) and its first detection (#4,), averaged over all polyps
in the test sequences.

1
Ay = F ; tapp = lder 3)

The time to detection A; was defined as the time elapsed be-
tween between the first appearance of a polyp and its display
to the user, taking into account the additional latency induced
during real-time inference, where for an input of 11 frames, it
would be necessary to wait to acquire the following 5 frames to
make a prediction on the central image.

1 d
Ad:FZP:tapp—tde,+§+l 4

The proposed architecture was additionally evaluated on an
external dataset. Results in this dataset were computed ac-
cording to object-wise metrics, as well as image-wise met-
rics described in (Misawa et al., 2020) to allow for compari-
son with other published results. In (Misawa et al., 2020), re-
sults were computed per frame, where a prediction for a frame
was deemed positive if at least one box was predicted in the
frame. This type of image-wise metrics yield higher results
than object-wise metrics (described above), as a frame will be
deemed as a true positive even when the detection does not
overlap with the ground truth polyp. The second difference in
the metrics is related to the per-polyp sensitivity, in that, for

the external database, a video sequence is deemed positive if at
least half of its frames are predicted as positive.

3.3. Results and analysis

3.3.1. 2D/ Hybrid comparison

To establish a baseline, a 2D FCN was trained initialising
the backbone weights on ImageNet - referred to as FCN (Im-
ageNet). The training set for this model consisted of images
from the Video Dataset training set and the full Image Dataset.
Furthermore, 10,000 negative images from the training proce-
dures from the Video Dataset were added to the training set
using the strategy previously described, by means of an FCN
model formerly trained on positive images exclusively. Cor-
respondingly, a hybrid model was trained on the training set
from the Video Dataset and 10,000 negative images, following
the negative mining strategy. The Image Dataset was excluded
as the hybrid architecture needs consecutive frames as inputs.
The hybrid network was trained using the weights from FCN
(ImageNet) to initialise and freeze the backbone, therefore only
training the segmentation head - this experiment was named
Hybrid (FCN). An input temporal depth d of five frames was
used. Sharing a common backbone, it was possible to solely
evaluate the effect of the 3D segmentation head. The proposed
model was also trained initialising the backbone from ImageNet
weights and training the full network. This experiment was re-
ferred to as Hybrid (ImageNet).

Table 1 depicts the associated results when tested on the
Video Dataset internal testing set. When comparing FCN (Im-
ageNet) and Hybrid (FCN) it can be observed that the incorpo-
ration of the 3D component caused a general increase in perfor-
mance, particularly in terms of temporal consistency metrics.
The temporal coherence increased by 5% showing that predic-
tions were more consistent on consecutive frames. The enhance
in temporal correlation was supported by a decrease of 9% in
the difference between the auto-correlation for the hybrid pre-
dictions and the ground truth masks, indicating that consecutive
predicted masks presented a higher similarity. Additionally, the
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Fig. 5. Results on a polyp sequence showing (top) the box dice overlap with the ground truth and (bottom) segmentation outputs for the FCN (blue) and
Hybrid (green) before box conversion postprocessing. The segmentation outputs are shown in blue for the FCN and green for the Hybrid model (for
interpretation of the references to colour, the reader is referred to the web version of this article).
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(a)

(b)

Fig. 6. Prediction timelines for a non-polyp procedure mapped onto a colon model for (a) Hybrid (ImageNet) and (b) FCN (ImageNet), where orange
stripes denote false positives. Network outputs are shown as an overlay on a video section.

introduction of temporal components led to an increase of both
sensitivity and specificity. This was achieved by a reduction of
short false positives and negatives in both hybrid implementa-
tions. The gain in sensitivity by the hybrid model came accom-
panied by a considerable increase of ~ 5% in the dice score for
detected polyps, showing that the quality of the segmentation
masks benefited from the temporal component. Figure 5(top)
shows the dice score over a polyp sequence for the FCN (Ima-
geNet) and the Hybrid (FCN) models, where it can be observed
that the dice score over consecutive polyp frames is more sta-
ble for the hybrid model. From the segmentation examples in
Figure 5(bottom) it can be noted that both models generated
similar outputs on good quality images. However, on blurry
frames the FCN yielded false negatives while the hybrid model
successfully used information from surrounding frames.

The Hybrid (ImageNet) experiment was trained from Ima-
geNet weights, achieving the highest sensitivity and specificity,
86.14% and 85.32% respectively (see Table 1). It also showed
the highest F1-score, demonstrating that it was possible to ob-
tain advantages from the hybrid architecture over its 2D coun-
terpart, even when using a lower amount of training data. Our
hybrid architecture successfully offered temporal benefits with-
out overfitting, a major disadvantage of 3D models. The re-
sults for Hybrid (ImageNet) were comparable to Hybrid (FCN),
showing similar increases in the quality of the segmentation
overlap as well as the temporal consistency metrics. Figure 6
shows the per frame predictions on one of the non-polyp full
colonoscopic withdrawals from the testing set, where it can be
seen that the number of false positives is reduced throughout
the procedure with the hybrid network compared to the FCN.
Although the mapping to a 3D model of the colon was not fully
realistic, it gave an indication of the clinical importance of re-
ducing the false positives, as too many false alarms can reduce
the usability of a clinical system.

A data benchmark was performed to show the closest com-
parison possible between architectures. Negative mining was
used to select non-polyp training frames for experiments re-

ported in Table 1, hence the training images used were not
identical between experiments. Table 2 shows the performance
of the previous experiments when trained uniquely on positive
data, allowing for a better comparison between the FCN and
our proposed architecture. Three models were trained as fol-
lows: (i) A 2D FCN was trained on the Video and Image train-
ing datasets, initialising its backbone from ImageNet weights.
(ii) A hybrid model was trained initialising the backbone from
this FCN (ImageNet), and training exclusively the segmentation
head. (iii) A hybrid model was also trained from ImageNet,
without freezing any layers. It is important to note that these
networks were trained exclusively on positive samples and false
positives were to be expected. The results presented in Table 2
show that, when pre-training with FCN (ImageNet), the pro-
posed model improved the performance considerably in all as-
pects when compared to FCN. Particularly, a 20.19% rise in
specificity was achieved, along with an important improvement
in the auto-correlation of the predictions, showing that the hy-
brid architecture was able to get rid of false short positives with-
out training on negative images. However, the hybrid model ini-
tialised from ImageNet, Hybrid (ImageNet), yielded poorer re-
sults when compared to the FCN ImageNet). This could be due
to the limited amount of training data used in this instance, the
Hybrid (ImageNet) also lacking the Image dataset from its train-
ing set. The results might indicate the tendency of the hybrid
architecture to overfit when reducing the dataset excessively, a
common problem on 3D architectures. Nevertheless this prob-
lem can be solved as the proposed architecture was shown to
successfully allowing to pre-train on still images while benefit-
ing from the temporal stability provided by the 3D segmenta-
tion head.

3.3.2. External testing

The models were tested on a completely external, publicly
available dataset (Misawa et al., 2020) to assess their gener-
alisation capabilities as well as to allow for external compar-
ison, and the results were presented in Table 3. When tested
on the SUN dataset our model achieves 86.99% sensitivity and
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Table 2. Evaluation of network performance when negative data is not included in the training set. Results are reported on the test set from the Video

¢

Dataset (pp and pf denote per-polyp and per-frame sensitivity, respectively). Object-wise metrics were used for the

Method Sens Sens Spec  Prec F1 Dice A A-corr TC
wp) (%) @) (%) () () (%) (%) (%) (%)
FCN (ImageNet) 100.00 87.77 54.02 87.81 87.80 7222 | 17.12+15.18 84.58
Hybrid (FCN) 100.00 88.88 7418 92.73 90.76 75.06 | 9.77+9.77  87.78
Hybrid (ImageNet) | 100.00 85.79 4454 87.45 86.61 6827 | 10.89+11.25 84.42

Table 3. Evaluation on the SUN polyp database (pp and pf denote per-polyp
and per-frame sensitivity, respectively). i denotes metrics from (Misawa
et al., 2020)

pp Sens  pf Sens  Spec
Method (%) (%) (%) F1 (%)
YOLOV3
(Misawa 98.0 90.5 93.7 -
etal., 2020) +
FCN t 96.0 91.38 85.61  87.49
IT'IY brid (ours) | o3 86.99 9041  87.58
FCN 100.0 89.46 76.50  80.80
Hybrid (ours) | 97.0 84.71 84.57  83.29

90.41% specificity, which is a higher performance than on the
Video Dataset reported on Table 1 (86% sensitivity and 85%
specificity). However, when evaluated with our object-wise
metrics (defined in Section 3.2), our model achieves an 84.71%
sensitivity and 84.57% specificity, marginally lower than on our
testing set. This shows that the hybrid model is able to main-
tain the test set performance on a completely different dataset
and generalises adequately. Nevertheless, the small loss in per-
frame sensitivity is translated in a drop of the per-polyp sensi-
tivity, where seven polyps yield false negatives on half or more
of their frames. Additionally, the results on the SUN database
are compared to other published results on this data. The re-
sults from Misawa et al. (Misawa et al., 2020) present a 3%
higher sensitivity and specificity when compared to our hybrid
model, and a 5% higher per polyp sensitivity. It is important
to note that the model from (Misawa et al., 2020) was trained
with images from 5 hospitals, one of them being Showa Uni-
versity Northern Yokohama Hospital, where the SUN dataset
was acquired. Even though there is no patient overlap, the do-
main of the SUN dataset is likely to be within the distribution
of their training set (due to factors such as the same endoscopic
device, similar colonoscopic techniques, colonoscopists over-
lap, similar patient demographics, etc.). Finally, the FCN base-
line model was also tested on the SUN database. It showed a
higher sensitivity and a lower specificity when compared to the
hybrid model, making it difficult to compare both architectures.
However, the F1-score was higher for the hybrid model, show-
ing that this architecture obtained a better sensitivity/specificity
balance, possibly due to having learnt a better data representa-
tion. When computing the results with our per-lesion metrics,
the sensitivity and specificity drop to 89.46% and 76.50% for
the FCN model, showing that it has a poorer per-frame preci-

sion, yielding false positive detections on polyp frames. All in
all, the proposed hybrid model maintains its performance when
tested on a dataset with a new distribution, generalising bet-
ter than its 2D counterpart. When compared to (Misawa et al.,
2020) the performance is found to be comparable, demonstrat-
ing the generalisation capabilities and robustness of the hybrid
architecture.

3.3.3. Input sequence length analysis

Previously presented experiments in Tables 1 and 2 were
trained with a temporal depth d = 5, meaning that each sam-
ple consisted of five consecutive frames. The parameter d was
chosen empirically based on the average speed of an endoscope
in the colon and the frame rate of the videos used (25fps). Sam-
ples of five frames where selected to ensure enough variation of
appearance while conserving the same scene within the sample.
Following the experiments presented in Section 3.3.1 to ascer-
tain the benefits of the hybrid architecture, further investigation
was implemented to find the optimal depth for the 3D stage of
the network. Several models were trained with the same param-
eters as for the Hybrid (ImageNet) model from Table 1. Figure 7
shows the performance of the hybrid model when trained with
different input sequence length, or temporal depth d, values.
The input sequence length ranged from 3 frames, the minimum
possible temporal depth, to 41 frames, the maximum possible
length allowed by the capacity of the GPU, which corresponds
to 1.64 seconds of video feed, enough time for the scene to
change radically. A first bar with a temporal depth d = 1 was
included, corresponding to the FCN (ImageNet) baseline.

Figure 7 shows the performance of the different input size
experiments in terms of sensitivity, specificity and F1-score, as
defined in Section 3.2, as well as for time to detection. As it can
be observed the overall performance is consistently higher in
experiments where the hybrid architecture is used (d > 1), with
the exception of d = 41. In this last experiment the sensitiv-
ity drops to 74%, probably because the input samples mask out
the polyp frames. The results become challenging to interpret
when comparing the temporal depth for different hybrid exper-
iments. Despite all efforts to maintain reproducibility between
experiments, it is important to note that the changes on the input
frames modify the order in which data is loaded during training,
generating random differences and thus small variations in per-
formance cannot be confidently attributed to the input size d.
The sensitivity, specificity and F1-Score metrics are depicted
cumulatively in Figure 7 to ease the visualisation. When taking
those three metrics into account, the results seem to indicate an
increase in performance with longer inputs (between 3 and 25).
However, the improvements found were small. For instance, the
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Fig. 7. Evaluation of the hybrid architecture on the Video Dataset when trained and tested with different input lengths, or temporal depths d. The stacked
bars show the performance (left axis) and the line plot shows the average delay to first detect a polyp (right axis). (For interpretation of the references to

colour, the reader is referred to the web version of this article.)

F1-Score was 90% for both the highest performing experiment
(d = 25) and the one with the shortest inputs d = 3. Addi-
tionally, the performance could increase with larger temporal
depths because of the nature of the data. Inherently, the Video
Dataset is biased towards long polyp scenes. In this dataset,
when a polyp is found, it stays in the scene for hundreds of
frames for optical inspection. Similarly, there are long intervals
in the procedures where there are no polyp appearances. In this
sense, models trained for longer input samples would benefit
from the stability of the data.

On the other hand, longer input temporal depths could nega-
tively affect changes in the video, namely when a polyp appears
or disappears from the scene. Arguably, the highest benefit of
a polyp detection model resides in detecting polyps that would
be missed otherwise, hence of short appearance in the colono-
scopic video. It is subsequently important to introduce time to
detection as a metric. As shown in Figure 7, the delay when
first detecting a polyp tends to increase the longer the inputs
are. Particularly the intrinsic delay from the model, the net-
work reaction time, increases with longer input sizes up to a
delay of 9.54 frames for d = 41. Additionally, longer inputs
linearly increase the time to detection, leading to larger user-
perceived delays (e.f. 29.54 frames for d = 41). It is worth
mentioning that different sensitivity/specificity balances are ob-
tained with different models, although they present a similar
F1-Score. The time to detection is negatively correlated to the
sensitivity, which might explain why experiments with 7, 9 and
11 frames have a higher delay.

All in all, benefits can be drawn from the hybrid architecture

even with short input samples. Longer inputs introduce a de-
lay when detecting polyps for the first time, but they also seem
to bring a increase in performance. However, it would be nec-
essary to test these models on prospective data to objectively
evaluate its effect on missed polyps.

4. Discussion and Conclusion

In this paper a novel hybrid 2D/3D segmentation CNN ar-
chitecture for polyp detection in colonoscopic videos was pre-
sented. It was shown that the hybrid network was able to en-
compass the benefits from a 2D architecture, namely success-
ful spatial representation learning, transfer learning capabilities
to pretrain from curated datasets of still images and general-
isation abilities despite being trained on reduced amounts of
data. The proposed architecture performed better than its 2D
counterpart when trained with less data. It was additionally re-
vealed that a great performance boost could be obtained from
pretraining on still images when training the hybrid model on
less data. This is particularly beneficial for clinical applications,
where large video datasets are challenging to collect and hence
still image data may be needed to provide strong and diverse
representation of the spatial domain. Furthermore, the model
was shown to generalise better to an external dataset and it ex-
hibited similar performance to results published by the study
that released said dataset. In the proposed method, the 3D seg-
mentation seamlessly incorporated temporal correlation in the
results encapsulating learning of spatio-temporal information
from smaller video datasets. We obtained an increase across
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all performance metrics, particularly in the temporal consis-
tency of the results. Ablation studies comparing training the full
model against solely updating the segmentation head demon-
strated the benefit of the 3D decoding. Additional analysis as-
sessed the effect of different temporal window sizes indicating
that benefits could be obtained even with shorter inputs, with
the added benefit of a lower delay to first detect a polyp.

Overall the hybrid architecture was validated on videos from
46 patients, including 25 unaltered, full-length negative proce-
dures, offering an increase in performance along with higher
quality segmentation potential. Moreover, the model was evalu-
ated on a publicly available dataset containing 100 polyps, dis-
playing promising results. All in all the hybrid network suc-
cessfully harnessed temporal information from videos to han-
dle short inconsistencies in the predictions hence showing a in-
creased suitability for clinical translation. The model was eval-
uated in video data and user centred metrics were used such as
time to detection, breaching the evaluation gap between “lab”
and “hospital”. The main limitation of the proposed solution is
related to the introduced delay. The model has longer compu-
tation time than a 2D network, which is added to a longer in-
trinsic network reaction time and the fact that future frames are
needed to compute a prediction on the current frame, yielding
an overall time to first detection. Despite the presented archi-
tecture showing similar performance to the state-of-the-art on
an external dataset, improvements in specificity are needed for
a successful translation to the clinical setup. Although the issue
can currently be minimised by post-processing techniques to re-
duce false positives, it leaves scope for improvement. Although
the model was assessed on video data, bringing the evaluation
closer to a real clinical setup, video datasets are biased towards
longer sequences on found polyps and shorter appearances in
the video from missed polyps. Future work includes evaluating
the system on prospective data to fully analyse the effect of the
delay of the hybrid architecture. Furthermore, it would be of
interest to exploit the modularity of the Hybrid 2D/3D architec-
ture and evaluate its performance with different backbones. In-
corporation of depth and colon mapping information (Rau et al.,
2019; Liu et al., 2018; Armin et al., 2018; Mathew et al., 2020;
Itoh et al., 2021; Cheng et al., 2021) can be exploited to com-
bine polyp detection with automated reporting tools, thus open-
ing doors for polyp finding, referral and surveillance.
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