366 research outputs found
Spin oscillations in transient diffusion of a spin pulse in n-type semiconductor quantum wells
By studying the time and spatial evolution of a pulse of the spin
polarization in -type semiconductor quantum wells, we highlight the
importance of the off-diagonal spin coherence in spin diffusion and transport.
Spin oscillations and spin polarization reverse along the the direction of spin
diffusion in the absence of the applied magnetic field are predicted from our
investigation.Comment: 5 pages, 4 figures, accepted for publication in PR
Linear Field Dependence of the Normal-State In-Plane Magnetoresistance of Sr2RuO4
The transverse and longitudinal in-plane magnetoresistances in the normal
state of superconducting Sr2RuO4 single crystals have been measured. At low
temperatures, both of them were found to be positive with a linear
magnetic-field dependence above a threshold field, a result not expected from
electronic band theory. We argue that such behavior is a manifestation of a
novel coherent state characterized by a spin pseudo gap in the quasi-particle
excitation spectrum in Sr2RuO4.Comment: 4 pages + 5 figure
Stability of dark solitons in a Bose-Einstein condensate trapped in an optical lattice
We investigate the stability of dark solitons (DSs) in an effectively
one-dimensional Bose-Einstein condensate in the presence of the magnetic
parabolic trap and an optical lattice (OL). The analysis is based on both the
full Gross-Pitaevskii equation and its tight-binding approximation counterpart
(discrete nonlinear Schr{\"o}dinger equation). We find that DSs are subject to
weak instabilities with an onset of instability mainly governed by the period
and amplitude of the OL. The instability, if present, sets in at large times
and it is characterized by quasi-periodic oscillations of the DS about the
minimum of the parabolic trap.Comment: Typo fixed in Eq. (1): cos^2 -> sin^
A-dependence of nuclear transparency in quasielastic A(e,e'p) at high Q^2
The A-dependence of the quasielastic A(e,e'p) reaction has been studied at
SLAC with H-2, C, Fe, and Au nuclei at momentum transfers Q^2 = 1, 3, 5, and
6.8 (GeV/c)^2. We extract the nuclear transparency T(A,Q^2), a measure of the
average probability that the struck proton escapes from the nucleus A without
interaction. Several calculations predict a significant increase in T with
momentum transfer, a phenomenon known as Color Transparency. No significant
rise within errors is seen for any of the nuclei studied.Comment: 5 pages incl. 2 figures, Caltech preprint OAP-73
Measurement of charged particle multiplicities in collisions at TeV in the forward region
The charged particle production in proton-proton collisions is studied with
the LHCb detector at a centre-of-mass energy of TeV in different
intervals of pseudorapidity . The charged particles are reconstructed
close to the interaction region in the vertex detector, which provides high
reconstruction efficiency in the ranges and
. The data were taken with a minimum bias trigger, only requiring
one or more reconstructed tracks in the vertex detector. By selecting an event
sample with at least one track with a transverse momentum greater than 1 GeV/c
a hard QCD subsample is investigated. Several event generators are compared
with the data; none are able to describe fully the multiplicity distributions
or the charged particle density distribution as a function of . In
general, the models underestimate the charged particle production
A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007
We present the results of the first search for gravitational wave bursts
associated with high energy neutrinos. Together, these messengers could reveal
new, hidden sources that are not observed by conventional photon astronomy,
particularly at high energy. Our search uses neutrinos detected by the
underwater neutrino telescope ANTARES in its 5 line configuration during the
period January - September 2007, which coincided with the fifth and first
science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed
for candidate gravitational-wave signals coincident in time and direction with
the neutrino events. No significant coincident events were observed. We place
limits on the density of joint high energy neutrino - gravitational wave
emission events in the local universe, and compare them with densities of
merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at
http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access
area to figures, tables at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000
Inclusive electron scattering from nuclei at x≃1
The inclusive A(e,e′) cross section for x≃1 was measured on 2H, C, Fe, and Au for momentum transfers Q2 from 1 to 6.8 (GeV/c)2. The scaling behavior of the data was examined in the region of transition from y scaling to x scaling. Throughout this transitional region, the data exhibit ξ scaling, reminiscent of the Bloom-Gilman duality seen in free nucleon scattering
Two-Body Photodisintegration of the Deuteron up to 2.8 GeV
Measurements were performed for the photodisintegration cross section of the deuteron for photon energies from 1.6 to 2.8 GeV and center-of-mass angles from 37° to 90°. The measured energy dependence of the cross section at θc.m.=90° is in agreement with the constituent counting rules
- …