192 research outputs found

    Schubert Polynomials for the affine Grassmannian of the symplectic group

    Full text link
    We study the Schubert calculus of the affine Grassmannian Gr of the symplectic group. The integral homology and cohomology rings of Gr are identified with dual Hopf algebras of symmetric functions, defined in terms of Schur's P and Q-functions. An explicit combinatorial description is obtained for the Schubert basis of the cohomology of Gr, and this is extended to a definition of the affine type C Stanley symmetric functions. A homology Pieri rule is also given for the product of a special Schubert class with an arbitrary one.Comment: 45 page

    Trematodes of the Great Barrier Reef, Australia: emerging patterns of diversity and richness in coral reef fishes

    Get PDF
    The Great Barrier Reef holds the richest array of marine life found anywhere in Australia, including a diverse and fascinating parasite fauna. Members of one group, the trematodes, occur as sexually mature adult worms in almost all Great Barrier Reef bony fish species. Although the first reports of these parasites were made 100 years ago, the fauna has been studied systematically for only the last 25 years. When the fauna was last reviewed in 1994 there were 94 species known from the Great Barrier Reef and it was predicted that there might be 2,270 in total. There are now 326 species reported for the region, suggesting that we are in a much improved position to make an accurate prediction of true trematode richness. Here we review the current state of knowledge of the fauna and the ways in which our understanding of this fascinating group is changing. Our best estimate of the true richness is now a range, 1,100–1,800 species. However there remains considerable scope for even these figures to be incorrect given that fewer than one-third of the fish species of the region have been examined for trematodes. Our goal is a comprehensive characterisation of this fauna, and we outline what work needs to be done to achieve this and discuss whether this goal is practically achievable or philosophically justifiable

    Patients' perceptions of the potential of breathing training for asthma: a qualitative study.

    Get PDF
    Poor symptom control is common in asthma. Breathing training exercises may be an effective adjunct to medication; it is therefore important to understand facilitators and barriers to uptake of breathing training exercises

    Free induction signal from biexcitons and bound excitons

    Full text link
    A theory of the free induction signal from biexcitons and bound excitons is presented. The simultaneous existence of the exciton continuum and a bound state is shown to result in a new type of time dependence of the free induction. The optically detected signal increases in time and oscillates with increasing amplitude until damped by radiative or dephasing processes. Radiative decay is anomalously fast and can result in strong picosecond pulses. The expanding area of a coherent exciton polarization (inflating antenna), produced by the exciting pulse, is the underlying physical mechanism. The developed formalism can be applied to different biexciton transients.Comment: RevTeX, 20 p. + 2 ps fig. To appear in Phys. Rev. B1

    Approaching the Gamow Window with Stored Ions : Direct Measurement of Xe 124 (p,Îł) in the ESR Storage Ring

    Get PDF
    © 2019 American Physical Society. All rights reserved.We report the first measurement of low-energy proton-capture cross sections of Xe124 in a heavy-ion storage ring. Xe12454+ ions of five different beam energies between 5.5 and 8 AMeV were stored to collide with a windowless hydrogen target. The Cs125 reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and x-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron and γ widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.Peer reviewedFinal Published versio

    Supporting self-management after attending a structured education programme: a qualitative longitudinal investigation of type 1 diabetes patients’ experiences and views

    Get PDF
    Background: Structured education programmes for patients with diabetes and other chronic conditions are being widely adopted. However, follow-up studies suggest that course graduates may struggle to sustain the self-care practices taught on their courses over time. This study explored the support needs of patients with type 1 diabetes after attending a structured education programme promoting an empowerment approach and training in use of flexible intensive insulin therapy, a regimen now widely advocated and used to manage this condition. The objective was to inform future support offered to course graduates. Methods: Repeat, in-depth interviews with 30 type 1 diabetes patients after attending Dose Adjustment for Normal Eating (DAFNE) courses in the UK, and six and 12 months later. Data were analysed using an inductive, thematic approach. Results: While the flexible intensive insulin treatment approach taught on DAFNE courses was seen as a logical and effective way of managing one’s diabetes, it was also considered more technically complex than other insulin regimens. To sustain effective disease self-management using flexible intensive insulin treatment over time, patients often expected, and needed, on-going input and support from health care professionals trained in the approach. This included: help determining insulin dose adjustments; reassurance; and, opportunities to trouble-shoot issues of concern. While some benefits were identified to receiving follow-up support in a group setting, most patients stated a preference or need for tailored and individualised support from appropriately-trained clinicians, accessible on an ‘as and when needed’ basis. Conclusions: Our findings highlight potential limitations to group-based forms of follow-up support for sustaining diabetes self-management. To maintain the clinical benefits of structured education for patients with type 1 diabetes over time, course graduates may benefit from and prefer ongoing, one-to-one support from health care professionals trained in the programme’s practices and principles. This support should be tailored and personalised to reflect patients’ specific and unique experiences of applying their education and training in the context of their everyday lives, and could be the subject of future research

    Field reconstruction from proton radiography of intense laser driven magnetic reconnection

    Get PDF
    Magnetic reconnection is a process that contributes significantly to plasma dynamics and energy transfer in a wide range of plasma and magnetic field regimes, including inertial confinement fusion experiments, stellar coronae, and compact, highly magnetized objects like neutron stars. Laboratory experiments in different regimes can help refine, expand, and test the applicability of theoretical models to describe reconnection. Laser-plasma experiments exploring magnetic reconnection at a moderate intensity (IL ∌1014 W cm-2) have been performed previously, where the Biermann battery effect self-generates magnetic fields and the field dynamics studied using proton radiography. At high laser intensities (ILλL2>1018 Wcm-2ÎŒm2), relativistic surface currents and the time-varying electric sheath fields generate the azimuthal magnetic fields. Numerical modeling of these intensities has shown the conditions that within the magnetic field region can reach the threshold where the magnetic energy can exceed the rest mass energy such that σcold = B2/(ÎŒ0nemec2) > 1 [A. E. Raymond et al., Phys. Rev. E 98, 043207 (2018)]. Presented here is the analysis of the proton radiography of a high-intensity (∌1018 W cm-2) laser driven magnetic reconnection geometry. The path integrated magnetic fields are recovered using a "field-reconstruction algorithm" to quantify the field strengths, geometry, and evolution

    SIMBIO-SYS : Scientific Cameras and Spectrometer for the BepiColombo Mission

    Get PDF
    The SIMBIO-SYS (Spectrometer and Imaging for MPO BepiColombo Integrated Observatory SYStem) is a complex instrument suite part of the scientific payload of the Mercury Planetary Orbiter for the BepiColombo mission, the last of the cornerstone missions of the European Space Agency (ESA) Horizon + science program. The SIMBIO-SYS instrument will provide all the science imaging capability of the BepiColombo MPO spacecraft. It consists of three channels: the STereo imaging Channel (STC), with a broad spectral band in the 400-950 nm range and medium spatial resolution (at best 58 m/px), that will provide Digital Terrain Model of the entire surface of the planet with an accuracy better than 80 m; the High Resolution Imaging Channel (HRIC), with broad spectral bands in the 400-900 nm range and high spatial resolution (at best 6 m/px), that will provide high-resolution images of about 20% of the surface, and the Visible and near-Infrared Hyperspectral Imaging channel (VIHI), with high spectral resolution (6 nm at finest) in the 400-2000 nm range and spatial resolution reaching 120 m/px, it will provide global coverage at 480 m/px with the spectral information, assuming the first orbit around Mercury with periherm at 480 km from the surface. SIMBIO-SYS will provide high-resolution images, the Digital Terrain Model of the entire surface, and the surface composition using a wide spectral range, as for instance detecting sulphides or material derived by sulphur and carbon oxidation, at resolutions and coverage higher than the MESSENGER mission with a full co-alignment of the three channels. All the data that will be acquired will allow to cover a wide range of scientific objectives, from the surface processes and cartography up to the internal structure, contributing to the libration experiment, and the surface-exosphere interaction. The global 3D and spectral mapping will allow to study the morphology and the composition of any surface feature. In this work, we describe the on-ground calibrations and the results obtained, providing an important overview of the instrument performances. The calibrations have been performed at channel and at system levels, utilizing specific setup in most of the cases realized for SIMBIO-SYS. In the case of the stereo camera (STC), it has been necessary to have a validation of the new stereo concept adopted, based on the push-frame. This work describes also the results of the Near-Earth Commissioning Phase performed few weeks after the Launch (20 October 2018). According to the calibration results and the first commissioning the three channels are working very well.Peer reviewe

    Acute Beneficial Hemodynamic Effects of a Novel 3D-Echocardiographic Optimization Protocol in Cardiac Resynchronization Therapy

    Get PDF
    Post-implantation therapies to optimize cardiac resynchronization therapy (CRT) focus on adjustments of the atrio-ventricular (AV) delay and ventricular-to-ventricular (VV) interval. However, there is little consensus on how to achieve best resynchronization with these parameters. The aim of this study was to examine a novel combination of doppler echocardiography (DE) and three-dimensional echocardiography (3DE) for individualized optimization of device based AV delays and VV intervals compared to empiric programming.25 recipients of CRT (male: 56%, mean age: 67 years) were included in this study. Ejection fraction (EF), the primary outcome parameter, and left ventricular (LV) dimensions were evaluated by 3DE before CRT (baseline), after AV delay optimization while pacing the ventricles simultaneously (empiric VV interval programming) and after individualized VV interval optimization. For AV delay optimization aortic velocity time integral (AoVTI) was examined in eight different AV delays, and the AV delay with the highest AoVTI was programmed. For individualized VV interval optimization 3DE full-volume datasets of the left ventricle were obtained and analyzed to derive a systolic dyssynchrony index (SDI), calculated from the dispersion of time to minimal regional volume for all 16 LV segments. Consecutively, SDI was evaluated in six different VV intervals (including LV or right ventricular preactivation), and the VV interval with the lowest SDI was programmed (individualized optimization).EF increased from baseline 23±7% to 30±8 (p<0.001) after AV delay optimization and to 32±8% (p<0.05) after individualized optimization with an associated decrease of end-systolic volume from a baseline of 138±60 ml to 115±42 ml (p<0.001). Moreover, individualized optimization significantly reduced SDI from a baseline of 14.3±5.5% to 6.1±2.6% (p<0.001).Compared with empiric programming of biventricular pacemakers, individualized echocardiographic optimization with the integration of 3-dimensional indices into the optimization protocol acutely improved LV systolic function and decreased ESV and can be used to select the optimal AV delay and VV interval in CRT
    • 

    corecore