60 research outputs found
Stent placement for renal arterial stenosis: where do we stand? A meta-analysis
PURPOSE: To perform a meta-analysis of renal arterial stent placement in
comparison with renal percutaneous transluminal angioplasty (PTA) in
patients with renal arterial stenosis. MATERIALS AND METHODS: Studies
dealing with renal arterial stent placement (14 articles; 678 patients)
and renal PTA (10 articles; 644 patients) published up to August 1998 were
selected. A random-effects model was used to pool the data. RESULTS: Renal
arterial stent placement proved highly successful, with an initial
adequate performance in 98% and major complications in 11%. The overall
cure rate for hypertension was 20%, whereas hypertension was improved in
49%. Renal function improved in 30% and stabilized in 38% of patients. The
restenosis rate at follow-up of 6-29 months was 17%. Stent placement had a
higher technical success rate and a lower restenosis rate than did renal
PTA (98% vs 77% and 17% vs 26%, respectively; P <.001). The complication
rate was not different between the two treatments. The cure rate for
hypertension was higher and the improvement rate for renal function was
lower after stent placement than after renal PTA (20% vs 10% and 30% vs
38%, respectively; P <.001). CONCLUSION: Renal arterial stent placement is
technically superior and clinically comparable to renal PTA alone
Particle Dark Matter Constraints from the Draco Dwarf Galaxy
It is widely thought that neutralinos, the lightest supersymmetric particles,
could comprise most of the dark matter. If so, then dark halos will emit radio
and gamma ray signals initiated by neutralino annihilation. A particularly
promising place to look for these indicators is at the center of the local
group dwarf spheroidal galaxy Draco, and recent measurements of the motion of
its stars have revealed it to be an even better target for dark matter
detection than previously thought. We compute limits on WIMP properties for
various models of Draco's dark matter halo. We find that if the halo is nearly
isothermal, as the new measurements indicate, then current gamma ray flux
limits prohibit much of the neutralino parameter space. If Draco has a moderate
magnetic field, then current radio limits can rule out more of it. These
results are appreciably stronger than other current constraints, and so
acquiring more detailed data on Draco's density profile becomes one of the most
promising avenues for identifying dark matter.Comment: 13 pages, 6 figure
High-Energy Cosmology: gamma rays and neutrinos from beyond the galaxy
Our knowledge of the high-energy universe is undergoing a period of rapid
change as new astronomical detectors of high-energy radiation start to operate
at their design sensitivities. Now is a boomtime for high-energy astrophysics,
with new discoveries from Swift and HESS, results from MAGIC and VERITAS
starting to be reported, the upcoming launches of the gamma-ray space
telescopes GLAST and AGILE, and anticipated data releases from IceCube and
Auger. A formalism for calculating statistical properties of cosmological
gamma-ray sources is presented. Application is made to model calculations of
the statistical distributions of gamma-ray and neutrino emission from (i)
beamed sources, specifically, long-duration GRBs, blazars, and extagalactic
microquasars, and (ii) unbeamed sources, including normal galaxies, starburst
galaxies and clusters. Expressions for the integrated intensities of faint
beamed and unbeamed high-energy radiation sources are also derived. A toy model
for the background intensity of radiation from dark-matter annihilation taking
place in the early universe is constructed. Estimates for the gamma-ray fluxes
of local group galaxies, starburst, and infrared luminous galaxies are briefly
reviewed. Because the brightest extragalactic gamma-ray sources are flaring
sources, and these are the best targets for sources of PeV -- EeV neutrinos and
ultra-high energy cosmic rays, rapidly slewing all-sky telescopes like MAGIC
and an all-sky gamma-ray observatory beyond Milagro will be crucial for optimal
science return in the multi-messenger age.Comment: 10 pages, 3 figs, accepted for publication in the Barcelona
Conference on Multimessenger Astronomy; corrected eq. 27, revised Fig. 3,
added 2 ref
Exploring interactions of plant microbiomes
A plethora of microbial cells is present in every gram of soil, and microbes are found extensively in plant and animal tissues. The mechanisms governed by microorganisms in the regulation of physiological processes of their hosts have been extensively studied in the light of recent findings on microbiomes. In plants, the components of these microbiomes may form distinct communities, such as those inhabiting the plant rhizosphere, the endosphere and the phyllosphere. In each of these niches, the "microbial tissue" is established by, and responds to, specific selective pressures. Although there is no clear picture of the overall role of the plant microbiome, there is substantial evidence that these communities are involved in disease control, enhance nutrient acquisition, and affect stress tolerance. In this review, we first summarize features of microbial communities that compose the plant microbiome and further present a series of studies describing the underpinning factors that shape the phylogenetic and functional plant-associated communities. We advocate the idea that understanding the mechanisms by which plants select and interact with their microbiomes may have a direct effect on plant development and health, and further lead to the establishment of novel microbiome-driven strategies, that can cope with the development of a more sustainable agriculture
Recommended from our members
Epstein-Barr virus: clinical and epidemiological revisits and genetic basis of oncogenesis
Epstein-Barr virus (EBV) is classified as a member in the order herpesvirales, family herpesviridae, subfamily gammaherpesvirinae and the genus lymphocytovirus. The virus is an exclusively human pathogen and thus also termed as human herpesvirus 4 (HHV4). It was the first oncogenic virus recognized and has been incriminated in the causation of tumors of both lymphatic and epithelial nature. It was reported in some previous studies that 95% of the population worldwide are serologically positive to the virus. Clinically, EBV primary infection is almost silent, persisting as a life-long asymptomatic latent infection in B cells although it may be responsible for a transient clinical syndrome called infectious mononucleosis. Following reactivation of the virus from latency due to immunocompromised status, EBV was found to be associated with several tumors. EBV linked to oncogenesis as detected in lymphoid tumors such as Burkitt's lymphoma (BL), Hodgkin's disease (HD), post-transplant lymphoproliferative disorders (PTLD) and T-cell lymphomas (e.g. Peripheral T-cell lymphomas; PTCL and Anaplastic large cell lymphomas; ALCL). It is also linked to epithelial tumors such as nasopharyngeal carcinoma (NPC), gastric carcinomas and oral hairy leukoplakia (OHL). In vitro, EBV many studies have demonstrated its ability to transform B cells into lymphoblastoid cell lines (LCLs). Despite these malignancies showing different clinical and epidemiological patterns when studied, genetic studies have suggested that these EBV- associated transformations were characterized generally by low level of virus gene expression with only the latent virus proteins (LVPs) upregulated in both tumors and LCLs. In this review, we summarize some clinical and epidemiological features of EBV- associated tumors. We also discuss how EBV latent genes may lead to oncogenesis in the different clinical malignancie
23rd IAEA Fusion Energy Conference: summary of sessions EX/C and ICC
An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction
Cues adopted by consumers in examining corporate website favorability: an empirical study of financial institutions in the UK and Russia
The purpose of this paper is to explore, reconcile and depict corporate website favorability (CWF), its antecedents and consequences in the financial setting in the UK and Russia context. To achieve the goals of this study, the research adopted a mixed method research design by using a survey, which is supported by insights from in-depth interviews and focus group discussions. Exploratory factor analysis (EFA), confirmatory factor analysis (CFA) and Structural equation modeling (SEM) were applied to gain insight into the various influences and relationships. The paper develops and empirically validates the framework of CWF antecedents and consequences. The paper indicates essential guidance for cross-functional managers and designers regarding the integrated and holistic utilization of building favorable corporate websites as part of the corporate identity management. The paper adds to the understanding of CWF and discusses the antecedents of CWF by drawing upon the existing literature. Furthermore, it offers possible consequences of CWF and provides a framework for future testing
Insights into the high-energy γ-ray emission of Markarian 501 from extensive multifrequency observations in the Fermi era
We report on the γ-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) γ-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 ± 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 ± 0.14, and the softest one is 2.51 ± 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size ≲0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (≃1044 erg s-1) constitutes only a small fraction (∼10-3) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude. © 2011. The American Astronomical Society
- …