566 research outputs found

    What does it take to learn a word?

    Get PDF
    Vocabulary learning is deceptively hard, but toddlers often make it look easy. Prior theories proposed that children’s rapid acquisition of words is based on language-specific knowledge and constraints. In contrast, more recent work converges on the view that word learning proceeds via domain-general processes that are tuned to richly structured—not impoverished—input. We argue that new theoretical insights, coupled with methodological tools, have pushed the field toward an appreciation of simple, content-free processes working together as a system to support the acquisition of words. We illustrate this by considering three central phenomena of early language development: referential ambiguity, fast-mapping, and the vocabulary spurt

    CPIC: a Curvilinear Particle-In-Cell code for plasma-material interaction studies

    Full text link
    We describe a new electrostatic Particle-In-Cell (PIC) code in curvilinear geometry called Curvilinear PIC (CPIC). The code models the microscopic (kinetic) evolution of a plasma with the PIC method, coupled with an adaptive computational grid that can conform to arbitrarily shaped domains. CPIC is particularly suited for multiscale problems associated with the interaction of complex objects with plasmas. A map is introduced between the physical space and the logical space, where the grid is uniform and Cartesian. In CPIC, most operations are performed in logical space. CPIC was designed following criteria of versatility, robustness and performance. Its main features are the use of structured meshes, a scalable field solver based on the black box multigrid algorithm and a hybrid mover, where particles' position is in logical space while the velocity is in physical space. Test examples involving the interaction of a plasma with material boundaries are presented.Comment: 11 pages, 7 figures, in press on IEEE Transactions on Plasma Scienc

    Kinetic-scale magnetic turbulence and finite Larmor radius effects at Mercury

    Full text link
    We use a nonstationary generalization of the higher-order structure function technique to investigate statistical properties of the magnetic field fluctuations recorded by MESSENGER spacecraft during its first flyby (01/14/2008) through the near Mercury's space environment, with the emphasis on key boundary regions participating in the solar wind -- magnetosphere interaction. Our analysis shows, for the first time, that kinetic-scale fluctuations play a significant role in the Mercury's magnetosphere up to the largest resolvable time scale ~20 s imposed by the signal nonstationarity, suggesting that turbulence at this planet is largely controlled by finite Larmor radius effects. In particular, we report the presence of a highly turbulent and extended foreshock system filled with packets of ULF oscillations, broad-band intermittent fluctuations in the magnetosheath, ion-kinetic turbulence in the central plasma sheet of Mercury's magnetotail, and kinetic-scale fluctuations in the inner current sheet encountered at the outbound (dawn-side) magnetopause. Overall, our measurements indicate that the Hermean magnetosphere, as well as the surrounding region, are strongly affected by non-MHD effects introduced by finite sizes of cyclotron orbits of the constituting ion species. Physical mechanisms of these effects and their potentially critical impact on the structure and dynamics of Mercury's magnetic field remain to be understood.Comment: 46 pages, 5 figures, 2 table

    Magnetic Reconnection with Asymmetry in the Outflow Direction

    Get PDF
    Magnetic reconnection with asymmetry in the outflow direction occurs in the Earth's magnetotail, coronal mass ejections, flux cancellation events, astrophysical disks, spheromak merging experiments, and elsewhere in nature and the laboratory. A control volume analysis is performed for the case of steady antiparallel magnetic reconnection with asymmetric downstream pressure, which is used to derive scaling relations for the outflow velocity from each side of the current sheet and the reconnection rate. Simple relationships for outflow velocity are presented for the incompressible case and the case of symmetric downstream pressure but asymmetric downstream density. Asymmetry alone is not found to greatly affect the reconnection rate. The flow stagnation point and magnetic field null do not coincide in a steady state unless the pressure gradient is negligible at the flow stagnation point.Comment: 12 pages, 8 figures. Submitted to JGR. Any comments will be appreciate

    Adsorption of benzene on Si(100) from first principles

    Full text link
    Adsorption of benzene on the Si(100) surface is studied from first principles. We find that the most stable configuration is a tetra-σ\sigma-bonded structure characterized by one C-C double bond and four C-Si bonds. A similar structure, obtained by rotating the benzene molecule by 90 degrees, lies slightly higher in energy. However, rather narrow wells on the potential energy surface characterize these adsorption configurations. A benzene molecule impinging on the Si surface is most likely to be adsorbed in one of three different di-σ\sigma-bonded, metastable structures, characterized by two C-Si bonds, and eventually converts into the lowest-energy configurations. These results are consistent with recent experiments.Comment: 4 pages, RevTex, 2 PostScript gzipped figure

    The toxicity of angiotensin converting enzyme inhibitors to larvae of the disease vectors Aedes aegypti and Anopheles gambiae

    Get PDF
    The control of mosquitoes is threatened by the appearance of insecticide resistance and therefore new control chemicals are urgently required. Here we show that inhibitors of mosquito peptidyl dipeptidase, a peptidase related to mammalian angiotensin-converting enzyme (ACE), are insecticidal to larvae of the mosquitoes, Aedes aegypti and Anopheles gambiae. ACE inhibitors (captopril, fosinopril and fosinoprilat) and two peptides (trypsin-modulating oostatic factor/TMOF and a bradykinin-potentiating peptide, BPP-12b) were all inhibitors of the larval ACE activity of both mosquitoes. Two inhibitors, captopril and fosinopril (a pro-drug ester of fosinoprilat), were tested for larvicidal activity. Within 24 h captopril had killed >90% of the early instars of both species with 3rd instars showing greater resistance. Mortality was also high within 24 h of exposure of 1st, 2nd and 3rd instars of An. gambiae to fosinopril. Fosinopril was also toxic to Ae. aegypti larvae, although the 1st instars appeared to be less susceptible to this pro-drug even after 72 h exposure. Homology models of the larval An. gambiae ACE proteins (AnoACE2 and AnoACE3) reveal structural differences compared to human ACE, suggesting that structure-based drug design offers a fruitful approach to the development of selective inhibitors of mosquito ACE enzymes as novel larvicides

    THE THREE-DIMENSIONAL EVOLUTION OF ION-SCALE CURRENT SHEETS: TEARING AND DRIFT-KINK INSTABILITIES IN THE PRESENCE OF PROTON TEMPERATURE ANISOTROPY

    Get PDF
    We present the first three-dimensional hybrid simulations of the evolution of ion-scale current sheets, with an investigation of the role of temperature anisotropy and associated kinetic instabilities on the growth of the tearing instability and particle heating. We confirm the ability of the ion cyclotron and firehose instabilities to enhance or suppress reconnection, respectively. The simulations demonstrate the emergence of persistent three-dimensional structures, including patchy reconnection sites and the fast growth of a narrow-band drift-kink instability, which suppresses reconnection for thin current sheets with weak guide fields. Potential observational signatures of the three-dimensional evolution of solar wind current sheets are also discussed. We conclude that kinetic instabilities, arising from non-Maxwellian ion populations, are significant to the evolution of three-dimensional current sheets, and two-dimensional studies of heating rates by reconnection may therefore over-estimate the ability of thin, ion-scale current sheets to heat the solar wind by reconnection

    The large longitudinal spread of solar energetic particles during the January 17, 2010 solar event

    Full text link
    We investigate multi-spacecraft observations of the January 17, 2010 solar energetic particle event. Energetic electrons and protons have been observed over a remarkable large longitudinal range at the two STEREO spacecraft and SOHO suggesting a longitudinal spread of nearly 360 degrees at 1AU. The flaring active region, which was on the backside of the Sun as seen from Earth, was separated by more than 100 degrees in longitude from the magnetic footpoints of each of the three spacecraft. The event is characterized by strongly delayed energetic particle onsets with respect to the flare and only small or no anisotropies in the intensity measurements at all three locations. The presence of a coronal shock is evidenced by the observation of a type II radio burst from the Earth and STEREO B. In order to describe the observations in terms of particle transport in the interplanetary medium, including perpendicular diffusion, a 1D model describing the propagation along a magnetic field line (model 1) (Dr\"oge, 2003) and the 3D propagation model (model 2) by (Dr\"oge et al., 2010) including perpendicular diffusion in the interplanetary medium have been applied, respectively. While both models are capable of reproducing the observations, model 1 requires injection functions at the Sun of several hours. Model 2, which includes lateral transport in the solar wind, reveals high values for the ratio of perpendicular to parallel diffusion. Because we do not find evidence for unusual long injection functions at the Sun we favor a scenario with strong perpendicular transport in the interplanetary medium as explanation for the observations.Comment: The final publication is available at http://www.springerlink.co

    Solar Wind Turbulence and the Role of Ion Instabilities

    Get PDF
    International audienc
    corecore