566 research outputs found
What does it take to learn a word?
Vocabulary learning is deceptively hard, but toddlers often make it look easy. Prior theories proposed that children’s rapid acquisition of words is based on language-specific knowledge and constraints. In contrast, more recent work converges on the view that word learning proceeds via domain-general processes that are tuned to richly structured—not impoverished—input. We argue that new theoretical insights, coupled with methodological tools, have pushed the field toward an appreciation of simple, content-free processes working together as a system to support the acquisition of words. We illustrate this by considering three central phenomena of early language development: referential ambiguity, fast-mapping, and the vocabulary spurt
CPIC: a Curvilinear Particle-In-Cell code for plasma-material interaction studies
We describe a new electrostatic Particle-In-Cell (PIC) code in curvilinear
geometry called Curvilinear PIC (CPIC). The code models the microscopic
(kinetic) evolution of a plasma with the PIC method, coupled with an adaptive
computational grid that can conform to arbitrarily shaped domains. CPIC is
particularly suited for multiscale problems associated with the interaction of
complex objects with plasmas. A map is introduced between the physical space
and the logical space, where the grid is uniform and Cartesian. In CPIC, most
operations are performed in logical space. CPIC was designed following criteria
of versatility, robustness and performance. Its main features are the use of
structured meshes, a scalable field solver based on the black box multigrid
algorithm and a hybrid mover, where particles' position is in logical space
while the velocity is in physical space. Test examples involving the
interaction of a plasma with material boundaries are presented.Comment: 11 pages, 7 figures, in press on IEEE Transactions on Plasma Scienc
Kinetic-scale magnetic turbulence and finite Larmor radius effects at Mercury
We use a nonstationary generalization of the higher-order structure function
technique to investigate statistical properties of the magnetic field
fluctuations recorded by MESSENGER spacecraft during its first flyby
(01/14/2008) through the near Mercury's space environment, with the emphasis on
key boundary regions participating in the solar wind -- magnetosphere
interaction. Our analysis shows, for the first time, that kinetic-scale
fluctuations play a significant role in the Mercury's magnetosphere up to the
largest resolvable time scale ~20 s imposed by the signal nonstationarity,
suggesting that turbulence at this planet is largely controlled by finite
Larmor radius effects. In particular, we report the presence of a highly
turbulent and extended foreshock system filled with packets of ULF
oscillations, broad-band intermittent fluctuations in the magnetosheath,
ion-kinetic turbulence in the central plasma sheet of Mercury's magnetotail,
and kinetic-scale fluctuations in the inner current sheet encountered at the
outbound (dawn-side) magnetopause. Overall, our measurements indicate that the
Hermean magnetosphere, as well as the surrounding region, are strongly affected
by non-MHD effects introduced by finite sizes of cyclotron orbits of the
constituting ion species. Physical mechanisms of these effects and their
potentially critical impact on the structure and dynamics of Mercury's magnetic
field remain to be understood.Comment: 46 pages, 5 figures, 2 table
Magnetic Reconnection with Asymmetry in the Outflow Direction
Magnetic reconnection with asymmetry in the outflow direction occurs in the
Earth's magnetotail, coronal mass ejections, flux cancellation events,
astrophysical disks, spheromak merging experiments, and elsewhere in nature and
the laboratory. A control volume analysis is performed for the case of steady
antiparallel magnetic reconnection with asymmetric downstream pressure, which
is used to derive scaling relations for the outflow velocity from each side of
the current sheet and the reconnection rate. Simple relationships for outflow
velocity are presented for the incompressible case and the case of symmetric
downstream pressure but asymmetric downstream density. Asymmetry alone is not
found to greatly affect the reconnection rate. The flow stagnation point and
magnetic field null do not coincide in a steady state unless the pressure
gradient is negligible at the flow stagnation point.Comment: 12 pages, 8 figures. Submitted to JGR. Any comments will be
appreciate
Adsorption of benzene on Si(100) from first principles
Adsorption of benzene on the Si(100) surface is studied from first
principles. We find that the most stable configuration is a
tetra--bonded structure characterized by one C-C double bond and four
C-Si bonds. A similar structure, obtained by rotating the benzene molecule by
90 degrees, lies slightly higher in energy. However, rather narrow wells on the
potential energy surface characterize these adsorption configurations. A
benzene molecule impinging on the Si surface is most likely to be adsorbed in
one of three different di--bonded, metastable structures, characterized
by two C-Si bonds, and eventually converts into the lowest-energy
configurations. These results are consistent with recent experiments.Comment: 4 pages, RevTex, 2 PostScript gzipped figure
The toxicity of angiotensin converting enzyme inhibitors to larvae of the disease vectors Aedes aegypti and Anopheles gambiae
The control of mosquitoes is threatened by the appearance of insecticide resistance and therefore new control chemicals are urgently required. Here we show that inhibitors of mosquito peptidyl dipeptidase, a peptidase related to mammalian angiotensin-converting enzyme (ACE), are insecticidal to larvae of the mosquitoes, Aedes aegypti and Anopheles gambiae. ACE inhibitors (captopril, fosinopril and fosinoprilat) and two peptides (trypsin-modulating oostatic factor/TMOF and a bradykinin-potentiating peptide, BPP-12b) were all inhibitors of the larval ACE activity of both mosquitoes. Two inhibitors, captopril and fosinopril (a pro-drug ester of fosinoprilat), were tested for larvicidal activity. Within 24 h captopril had killed >90% of the early instars of both species with 3rd instars showing greater resistance. Mortality was also high within 24 h of exposure of 1st, 2nd and 3rd instars of An. gambiae to fosinopril. Fosinopril was also toxic to Ae. aegypti larvae, although the 1st instars appeared to be less susceptible to this pro-drug even after 72 h exposure. Homology models of the larval An. gambiae ACE proteins (AnoACE2 and AnoACE3) reveal structural differences compared to human ACE, suggesting that structure-based drug design offers a fruitful approach to the development of selective inhibitors of mosquito ACE enzymes as novel larvicides
THE THREE-DIMENSIONAL EVOLUTION OF ION-SCALE CURRENT SHEETS: TEARING AND DRIFT-KINK INSTABILITIES IN THE PRESENCE OF PROTON TEMPERATURE ANISOTROPY
We present the first three-dimensional hybrid simulations of the evolution of
ion-scale current sheets, with an investigation of the role of temperature
anisotropy and associated kinetic instabilities on the growth of the tearing
instability and particle heating. We confirm the ability of the ion cyclotron
and firehose instabilities to enhance or suppress reconnection, respectively.
The simulations demonstrate the emergence of persistent three-dimensional
structures, including patchy reconnection sites and the fast growth of a
narrow-band drift-kink instability, which suppresses reconnection for thin
current sheets with weak guide fields. Potential observational signatures of
the three-dimensional evolution of solar wind current sheets are also
discussed. We conclude that kinetic instabilities, arising from non-Maxwellian
ion populations, are significant to the evolution of three-dimensional current
sheets, and two-dimensional studies of heating rates by reconnection may
therefore over-estimate the ability of thin, ion-scale current sheets to heat
the solar wind by reconnection
The large longitudinal spread of solar energetic particles during the January 17, 2010 solar event
We investigate multi-spacecraft observations of the January 17, 2010 solar
energetic particle event. Energetic electrons and protons have been observed
over a remarkable large longitudinal range at the two STEREO spacecraft and
SOHO suggesting a longitudinal spread of nearly 360 degrees at 1AU. The flaring
active region, which was on the backside of the Sun as seen from Earth, was
separated by more than 100 degrees in longitude from the magnetic footpoints of
each of the three spacecraft. The event is characterized by strongly delayed
energetic particle onsets with respect to the flare and only small or no
anisotropies in the intensity measurements at all three locations. The presence
of a coronal shock is evidenced by the observation of a type II radio burst
from the Earth and STEREO B. In order to describe the observations in terms of
particle transport in the interplanetary medium, including perpendicular
diffusion, a 1D model describing the propagation along a magnetic field line
(model 1) (Dr\"oge, 2003) and the 3D propagation model (model 2) by (Dr\"oge et
al., 2010) including perpendicular diffusion in the interplanetary medium have
been applied, respectively. While both models are capable of reproducing the
observations, model 1 requires injection functions at the Sun of several hours.
Model 2, which includes lateral transport in the solar wind, reveals high
values for the ratio of perpendicular to parallel diffusion. Because we do not
find evidence for unusual long injection functions at the Sun we favor a
scenario with strong perpendicular transport in the interplanetary medium as
explanation for the observations.Comment: The final publication is available at http://www.springerlink.co
Recommended from our members
The Solar Stormwatch CME catalogue: results from the first space weather citizen science project
Solar Stormwatch was the first space weather citizen science project, the aim of which was to identify and track coronal mass ejections (CMEs) observed by the Heliospheric Imagers aboard the STEREO satellites. The project has now been running for approximately 4 years, with input from >16000 citizen scientists, resulting in a dataset of >38000 time-elongation profiles of CME trajectories, observed over 18 pre-selected position angles. We present our method for reducing this data set into aCME catalogue. The resulting catalogue consists of 144 CMEs over the period January-2007 to February-2010, of which 110 were observed by STEREO-A and 77 were observed by STEREO-B. For each CME, the time-elongation profiles generated by the citizen scientists are averaged into a consensus profile along each position angle that the event was tracked. We consider this catalogue to be unique, being at present the only citizen science generated CME catalogue, tracking CMEs over an elongation range of 4 degrees out to a maximum of approximately 70 degrees. Using single spacecraft fitting techniques, we estimate the speed, direction, solar source region and latitudinal width of each CME. This shows that, at present, the Solar Stormwatch catalogue (which covers only solar minimum years) contains almost exclusively slow CMEs, with a mean speed of approximately 350 kms−1. The full catalogue is available for public access at www.met.reading.ac.uk/spate/stormwatch. This includes, for each event, the unprocessed time-elongation profiles generated by Solar Stormwatch, the consensus time-elongation profiles and a set of summary plots, as well as the estimated CME properties
- …
