122 research outputs found
Statistical Seismic Analysis by b-Value and Occurrence Time of the Latest Earthquakes in Italy
The study reported in this paper concerns the temporal variation in the b-value of the Gutenberg–Richter frequency–magnitude law, applied to the earthquakes that struck Italy from 2009 to 2016 in the geographical areas of L’Aquila, the Emilia Region, and Amatrice–Norcia. Generally, the b-value varies from one region to another dependent on earthquake incidences. Higher values of this parameter are correlated to the occurrence of low-magnitude events spread over a wide geographical area. Conversely, a lower b-value may lead to the prediction of a major earthquake localized along a fault. In addition, it is observed that each seismic event has a different “occurrence time”, which is a key point in the statistical study of earthquakes. In particular, its results are absolutely different for each specific event, and may vary from years to months or even just a few hours. Hence, both short- and long-term precursor phenomena have to be examined. Accordingly, the b-value analysis has to be performed by choosing the best time windows to study the foreshock and aftershock activities
Prestressing wire breakage monitoring using sound event detection
Detecting prestressed wire breakage in concrete bridges is essential for ensuring safety and longevity and preventing catastrophic failures. This study proposes a novel approach for wire breakage detection using Mel-frequency cepstral coefficients (MFCCs) and back-propagation neural network (BPNN). Experimental data from two bridges in Italy were acquired to train and test the models. To overcome the limited availability of real-world training data, data augmentation techniques were employed to increase the data set size, enhancing the capability of the models and preventing over-fitting problems. The proposed method uses MFCCs to extract features from acoustic emission signals produced by wire breakage, which are then classified by the BPNN. The results show that the proposed method can detect and classify sound events effectively, demonstrating the promising potential of BPNN for real-time monitoring and diagnosis of bridges. The significance of this work lies in its contribution to improving bridge safety and preventing catastrophic failures. The combination of MFCCs and BPNN offers a new approach to wire breakage detection, while the use of real-world data and data augmentation techniques are significant contributions to overcoming the limited availability of training data. The proposed method has the potential to be a generalized and robust model for real-time monitoring of bridges, ultimately leading to safer and longer-lasting infrastructure
Neutron emissions in brittle rocks during compression tests: Monotonic vs cyclic loading
Neutron emission measurements, by means of 3He devices and neutron bubble detectors, were performed during two different kinds of compression tests on brittle rocks: (i) under displacement control, and (ii) under cyclic loading. The material used for the tests was Green Luserna Granite, with different specimen sizes and shapes, and consequently with different brittleness numbers. Since the analyzed material contains iron, our conjecture is that piezonuclear reactions involving fission of iron into aluminum, or into magnesium and silicon, should have occurred during compression damage and failure. Some studies have been already conducted on the different forms of energy emitted during the failure of brittle materials. They are based on the signals captured by acoustic emission measurement systems, or on the detection of electromagnetic charge. On the other hand, piezonuclear neutron emissions from very brittle rock specimens in compression have been discovered only very recently. In this paper, the authors analyse this phenomenon from an experimental point of vie
MAGIC Upper Limits for two Milagro-detected, Bright Fermi Sources in the Region of SNR G65.1+0.6
We report on the observation of the region around supernova remnant G65.1+0.6
with the stand-alone MAGIC-I telescope. This region hosts the two bright GeV
gamma-ray sources 1FGL J1954.3+2836 and 1FGL J1958.6+2845. They are identified
as GeV pulsars and both have a possible counterpart detected at about 35 TeV by
the Milagro observatory. MAGIC collected 25.5 hours of good quality data, and
found no significant emission in the range around 1 TeV. We therefore report
differential flux upper limits, assuming the emission to be point-like (<0.1
deg) or within a radius of 0.3 deg. In the point-like scenario, the flux limits
around 1 TeV are at the level of 3 % and 2 % of the Crab Nebula flux, for the
two sources respectively. This implies that the Milagro emission is either
extended over a much larger area than our point spread function, or it must be
peaked at energies beyond 1 TeV, resulting in a photon index harder than 2.2 in
the TeV band.Comment: 8 pages, 3 figures, 1 tabl
Simultaneous multi-frequency observation of the unknown redshift blazar PG 1553+113 in March-April 2008
The blazar PG 1553+113 is a well known TeV gamma-ray emitter. In this paper,
we determine its spectral energy distribution using simultaneous
multi-frequency data in order to study its emission processes. An extensive
campaign was carried out between March and April 2008, where optical, X-ray,
high-energy (HE) gamma-ray, and very-high-energy (VHE) gamma-ray data were
obtained with the KVA, Abastumani, REM, RossiXTE/ASM, AGILE and MAGIC
telescopes, respectively. This is the first simultaneous broad-band (i.e.,
HE+VHE) gamma-ray observation, though AGILE did not detect the source. We
combine data to derive source's spectral energy distribution and interpret its
double peaked shape within the framework of a synchrotron self compton modelComment: 5 pages, 2 figures, publishe
The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development
The relationship between stress and food consumption has been well documented in adults but less so in developing vertebrates. Here we demonstrate that an encounter with a stressor can suppress food consumption in larval zebrafish. Furthermore, we provide indication that food intake suppression cannot be accounted for by changes in locomotion, oxygen consumption and visual responses, as they remain unaffected after exposure to a potent stressor. We also show that feeding reoccurs when basal levels of cortisol (stress hormone in humans and teleosts) are re-established. The results present evidence that the onset of stress can switch off the drive for feeding very early in vertebrate development, and add a novel endpoint for analyses of metabolic and behavioral disorders in an organism suitable for high-throughput genetics and non-invasive brain imaging
MAGIC observations and multiwavelength properties of the quasar 3C279 in 2007 and 2009
3C 279, the first quasar discovered to emit VHE gamma-rays by the MAGIC telescope in 2006, was reobserved by MAGIC in January 2007 during a major optical flare and from December 2008 to April 2009 following an alert from the Fermi space telescope on an exceptionally high gamma -ray state. The January 2007 observations resulted in a detection on January 16 with significance 5.2 sigma, corresponding to a F(> 150 GeV) (3.8 \pm 0.8) \cdot 10^-11 ph cm^-2 s^-1 while the overall data sample does not show significant signal. The December 2008 - April 2009 observations did not detect the source. We study the multiwavelength behavior of the source at the epochs of MAGIC observations, collecting quasi-simultaneous data at optical and X-ray frequencies and for 2009 also gamma-ray data from Fermi. We study the light curves and spectral energy distribution of the source. The spectral energy distributions of three observing epochs (including the February 2006, which has been previously published in Albert et al. 2008a) are modeled with one-zone inverse Compton models and the emission on January 16, 2007 also with two zone model and with a lepto-hadronic model. We find that the VHE gamma-ray emission detected in 2006 and 2007 challenges standard one-zone model, based on relativistic electrons in a jet scattering broad line region photons, while the other studied models fit the observed spectral energy distribution more satisfactorily
- …