43 research outputs found
Recommended from our members
Coupling between gamma-band power and cerebral blood volume during recurrent acute neocortical seizures
Characterization of neural and hemodynamic biomarkers of epileptic activity that can be measured using non-invasive techniques is fundamental to the accurate identification of the epileptogenic zone (EZ) in the clinical setting. Recently, oscillations at gamma-band frequencies and above (>30 Hz) have been suggested to provide valuable localizing information of the EZ and track cortical activation associated with epileptogenic processes. Although a tight coupling between gamma-band activity and hemodynamic-based signals has been consistently demonstrated in non-pathological conditions, very little is known about whether such a relationship is maintained in epilepsy and the laminar etiology of these signals. Confirmation of this relationship may elucidate the underpinnings of perfusion-based signals in epilepsy and the potential value of localizing the EZ using hemodynamic correlates of pathological rhythms. Here, we use concurrent multi-depth electrophysiology and 2-dimensional optical imaging spectroscopy to examine the coupling between multi-band neural activity and cerebral blood volume (CBV) during recurrent acute focal neocortical seizures in the urethane-anesthetized rat. We show a powerful correlation between gamma-band power (25-90 Hz) and CBV across cortical laminae, in particular layer 5, and a close association between gamma measures and multi-unit activity (MUA). Our findings provide insights into the laminar electrophysiological basis of perfusion-based imaging signals in the epileptic state and may have implications for further research using non-invasive multi-modal techniques to localize epileptogenic tissue
Broad-band X-ray spectral analysis of the Seyfert 1 galaxy GRS 1734-292
We discuss the broad-band X-ray spectrum of GRS 1734â292 obtained from non-simultaneous XMMâNewton and NuSTAR (Nuclear Spectroscopic Telescope Array) observations, performed in 2009 and 2014, respectively. GRS1734â292 is a Seyfert 1 galaxy, located near the Galactic plane at z = 0.0214. The NuSTAR spectrum (3â80 keV) is dominated by a primary power-law continuum with Î = 1.65 ± 0.05 and a high-energy cut-off Ec=53+11â8 keV, one of the lowest measured by NuSTAR in a Seyfert galaxy. Comptonization models show a temperature of the coronal plasma of kTe=11.9+1.2â0.9 keV and an optical depth, assuming a slab geometry, Ï=2.98+0.16â0.19 or a similar temperature and Ï=6.7+0.3â0.4 assuming a spherical geometry. The 2009 XMMâNewton spectrum is well described by a flatter intrinsic continuum (â Î=1.47+0.07â0.03â ) and one absorption line due to Fe XXV Kα produced by a warm absorber. Both data sets show a modest iron Kα emission line at 6.4 keV and the associated Compton reflection, due to reprocessing from neutral circumnuclear material
NuStar observations of WISE J1036+0449, a galaxy at z ⌠1 obscured by hot dust
Hot dust-obscured galaxies (hot DOGs), selected from Wide-Field Infrared Survey Explorerâs all-sky infrared survey, host some of the most powerful active galactic nuclei known and may represent an important stage in the evolution of galaxies. Most known hot DOGs are located at z> 1.5, due in part to a strong bias against identifying them at lower redshift related to the selection criteria. We present a new selection method that identifies 153 hot DOG candidates at zË 1, where they are significantly brighter and easier to study. We validate this approach by measuring a redshift z = 1.009 and finding a spectral energy distribution similar to that of higher-redshift hot DOGs for one of these objects, WISE J1036+0449 ({L}{Bol}â 8Ă {10}46 {erg} {{{s}}}-1). We find evidence of a broadened component in Mg II, which would imply a black hole mass of {M}{BH}â 2Ă {10}8 {M}â and an Eddington ratio of {λ }{Edd}â 2.7. WISE J1036+0449 is the first hot DOG detected by the Nuclear Spectroscopic Telescope Array, and observations show that the source is heavily obscured, with a column density of {N}{{H}}â (2{--}15)Ă {10}23 {{cm}}-2. The source has an intrinsic 2-10 keV luminosity of Ë 6Ă {10}44 {erg} {{{s}}}-1, a value significantly lower than that expected from the mid-infrared/X-ray correlation. We also find that other hot DOGs observed by X-ray facilities show a similar deficiency of X-ray flux. We discuss the origin of the X-ray weakness and the absorption properties of hot DOGs. Hot DOGs at zâČ 1 could be excellent laboratories to probe the characteristics of the accretion flow and of the X-ray emitting plasma at extreme values of the Eddington ratio
Degree of adaptive male mate choice is positively correlated with female quality variance
When the cost of reproduction for males and variance in female quality are high, males are predicted to show adaptive mate choice. Using Drosophila melanogaster, we test this prediction and show that sperm limited males preferentially mated with young and/or well fed females. The preferred females had higher reproductive output â direct evidence of adaptive precopulatory male mate choice. Our most striking finding is the strong positive correlation between the degree of mating bias showed by the males and the variance in the fitness of the females. We discuss the possible mechanism for such adaptive male mate choice and propose that such choice has important consequences with respect to the existing understanding of the mating system and the evolution of aging
A review of African horse sickness and its implications for Ireland
African horse sickness is an economically highly important non-contagious but infectious Orbivirus disease that is transmitted by various species of Culicoides midges. The equids most severely affected by the virus are horses, ponies, and European donkeys; mules are somewhat less susceptible, and African donkeys and zebra are refractory to the devastating consequences of infection. In recent years, Bluetongue virus, an Orbivirus similar to African horse sickness, which also utilises Culicoides spp. as its vector, has drastically increased its range into previously unaffected regions in northern Europe, utilising indigenous vector species, and causing widespread economic damage to the agricultural sector. Considering these events, the current review outlines the history of African horse sickness, including information concerning virus structure, transmission, viraemia, overwintering ability, and the potential implications that an outbreak would have for Ireland. While the current risk for the introduction of African horse sickness to Ireland is considered at worst âvery lowâ, it is important to note that prior to the 2006 outbreak of Bluetongue in northern Europe, both diseases were considered to be of equal risk to the United Kingdom (âmedium-riskâ). It is therefore likely that any outbreak of this disease would have serious socio-economic consequences for Ireland due to the high density of vulnerable equids and the prevalence of Culicoides species, potentially capable of vectoring the virus
Landscape Ecology of Sylvatic Chikungunya Virus and Mosquito Vectors in Southeastern Senegal
The risk of human infection with sylvatic chikungunya (CHIKV) virus was assessed in a focus of sylvatic arbovirus circulation in Senegal by investigating distribution and abundance of anthropophilic Aedes mosquitoes, as well as the abundance and distribution of CHIKV in these mosquitoes. A 1650 km2 area was classified into five land cover classes: forest, barren, savanna, agriculture and village. A total of 39,799 mosquitoes was sampled from all classes using human landing collections between June 2009 and January 2010. Mosquito diversity was extremely high, and overall vector abundance peaked at the start of the rainy season. CHIKV was detected in 42 mosquito pools. Our data suggest that Aedes furcifer, which occurred abundantly in all land cover classes and landed frequently on humans in villages outside of houses, is probably the major bridge vector responsible for the spillover of sylvatic CHIKV to humans
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Coquillettidia (Culicidae, Diptera) mosquitoes are natural vectors of avian malaria in Africa
<p>Abstract</p> <p>Background</p> <p>The mosquito vectors of <it>Plasmodium </it>spp. have largely been overlooked in studies of ecology and evolution of avian malaria and other vertebrates in wildlife.</p> <p>Methods</p> <p><it>Plasmodium </it>DNA from wild-caught <it>Coquillettidia </it>spp. collected from lowland forests in Cameroon was isolated and sequenced using nested PCR. Female <it>Coquillettidia aurites </it>were also dissected and salivary glands were isolated and microscopically examined for the presence of sporozoites.</p> <p>Results</p> <p>In total, 33% (85/256) of mosquito pools tested positive for avian <it>Plasmodium </it>spp., harbouring at least eight distinct parasite lineages. Sporozoites of <it>Plasmodium </it>spp. were recorded in salivary glands of <it>C. aurites </it>supporting the PCR data that the parasites complete development in these mosquitoes. Results suggest <it>C. aurites</it>, <it>Coquillettidia pseudoconopas </it>and <it>Coquillettidia metallica </it>as new and important vectors of avian malaria in Africa. All parasite lineages recovered clustered with parasites formerly identified from several bird species and suggest the vectors capability of infecting birds from different families.</p> <p>Conclusion</p> <p>Identifying the major vectors of avian <it>Plasmodium </it>spp. will assist in understanding the epizootiology of avian malaria, including differences in this disease distribution between pristine and disturbed landscapes.</p
Reciprocity of Social Influence
Humans seek advice, via social interaction, to improve their decisions. While social interaction is often reciprocal, the role of reciprocity in social influence is unknown. Here, we tested the hypothesis that our influence on others affects how much we are influenced by them. Participants first made a visual perceptual estimate and then shared their estimate with an alleged partner. Then, in alternating trials, the participant either revised their decisions or observed how the partner revised theirs. We systematically manipulated the partner's susceptibility to influence from the participant. We show that participants reciprocated influence with their partner by gravitating toward the susceptible (but not insusceptible) partner's opinion. In further experiments, we showed that reciprocity is both a dynamic process and is abolished when people believed that they interacted with a computer. Reciprocal social influence is a signaling medium for human-to-human communication that goes beyond aggregation of evidence for decision improvement
The effects of focal epileptic activity on regional sensory-evoked neurovascular coupling and postictal modulation of bilateral sensory processing
While it is known that cortical sensory dysfunction may occur in focal neocortical epilepsy, it is unknown whether sensory-evoked neurovascular coupling is also disrupted during epileptiform activity. Addressing this open question may help to elucidate both the effects of focal neocortical epilepsy on sensory responses and the neurovascular characteristics of epileptogenic regions in sensory cortex. We therefore examined bilateral sensory-evoked neurovascular responses before, during, and after 4-aminopyridine (4-AP, 15 mmol/L, 1 ΌL) induced focal neocortical seizures in right vibrissal cortex of the rat. Stimulation consisted of electrical pulse trains (16 seconds, 5 Hz, 1.2 mA) presented to the mystacial pad. Consequent current-source density neural responses and epileptic activity in both cortices and across laminae were recorded via two 16-channel microelectrodes bilaterally implanted in vibrissal cortices. Concurrent two-dimensional optical imaging spectroscopy was used to produce spatiotemporal maps of total, oxy-, and deoxy-hemoglobin concentration. Compared with control, sensory-evoked neurovascular coupling was altered during ictal activity, but conserved postictally in both ipsilateral and contralateral vibrissal cortices, despite neurovascular responses being significantly reduced in the former, and enhanced in the latter. Our results provide insights into sensory-evoked neurovascular dynamics and coupling in epilepsy, and may have implications for the localization of epileptogenic foci and neighboring eloquent cortex. © 2013 ISCBFM All rights reserved