65 research outputs found

    Mechanistic insights into the reversible lithium storage in an open porous carbon via metal cluster formation in all solid-state batteries

    Get PDF
    Porous carbons are promising anode materials for next generation lithium batteries due to their large lithium storage capacities. However, their high voltage slope during lithiation and delithiation as well as capacity fading due to intense formation of solid electrolyte interphase (SEI) limit their gravimetric and volumetric energy densities. Herein we compare a microporous carbide-derived carbon material (MPC) as promising future anode for all solid-state batteries with a commercial high-performance hard carbon anode. The MPC obtains high and reversible lithiation capacities of 1000 mAh g−1carbon in half-cells exhibiting an extended plateau region near 0 V vs. Li/Li+ preferable for full-cell application. The well-defined micro porosity of the MPC with a specific surface area of >1500 m2 g−1 combines well with the argyrodite-type electrolyte (Li6PS5Cl) suppressing extensive SEI formation to deliver high coulombic efficiencies. Preliminary full-cell measurements vs. nickel-rich NMC-cathodes (LiNi0.9Co0.05Mn0.05O2) provide a considerably improved average potential of 3.76 V leading to a projected energy density as high as 449 Wh kg−1 and reversible cycling for more than 60 cycles. 7Li Nuclear Magnetic Resonance spectroscopy was combined with ex-situ Small Angle X-ray Scattering to elucidate the storage mechanism of lithium inside the carbon matrix. The formation of extended quasi-metallic lithium clusters after electrochemical lithiation was revealed

    The Large Observatory for x-ray timing

    Get PDF
    The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a WideField Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study

    Euclid preparation: I. the Euclid Wide Survey

    Get PDF
    Euclid is a mission of the European Space Agency that is designed to constrain the properties of dark energy and gravity via weak gravitational lensing and galaxy clustering. It will carry out a wide area imaging and spectroscopy survey (the Euclid Wide Survey: EWS) in visible and near-infrared bands, covering approximately 15 000 deg2 of extragalactic sky in six years. The wide-field telescope and instruments are optimised for pristine point spread function and reduced stray light, producing very crisp images. This paper presents the building of the Euclid reference survey: The sequence of pointings of EWS, deep fields, and calibration fields, as well as spacecraft movements followed by Euclid as it operates in a step-And-stare mode from its orbit around the Lagrange point L2. Each EWS pointing has four dithered frames; we simulated the dither pattern at the pixel level to analyse the effective coverage. We used up-To-date models for the sky background to define the Euclid region-of-interest (RoI). The building of the reference survey is highly constrained from calibration cadences, spacecraft constraints, and background levels; synergies with ground-based coverage were also considered. Via purposely built software, we first generated a schedule for the calibrations and deep fields observations. On a second stage, the RoI was tiled and scheduled with EWS observations, using an algorithm optimised to prioritise the best sky areas, produce a compact coverage, and ensure thermal stability. The result is the optimised reference survey RSD-2021A, which fulfils all constraints and is a good proxy for the final solution. The current EWS covers ∌14.500 deg2. The limiting AB magnitudes (5ρpoint-like source) achieved in its footprint are estimated to be 26.2 (visible band IE) and 24.5 (for near infrared bands YE, JE, HE); for spectroscopy, the Hα line flux limit is 2.10-16 erg-1 cm-2 s-1 at 1600 nm; and for diffuse emission, the surface brightness limits are 29.8 (visible band) and 28.4 (near infrared bands) mag arcsec-2

    Euclid Near Infrared Spectrometer and Photometer instrument concept and first test results obtained for different breadboards models at the end of phase C

    Get PDF
    The Euclid mission objective is to understand why the expansion of the Universe is accelerating through by mapping the geometry of the dark Universe by investigating the distance-redshift relationship and tracing the evolution of cosmic structures. The Euclid project is part of ESA's Cosmic Vision program with its launch planned for 2020 (ref [1]). The NISP (Near Infrared Spectrometer and Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (900- 2000nm) as a photometer and spectrometer. The instrument is composed of: - a cold (135K) optomechanical subsystem consisting of a Silicon carbide structure, an optical assembly (corrector and camera lens), a filter wheel mechanism, a grism wheel mechanism, a calibration unit and a thermal control system - a detection subsystem based on a mosaic of 16 HAWAII2RG cooled to 95K with their front-end readout electronic cooled to 140K, integrated on a mechanical focal plane structure made with molybdenum and aluminum. The detection subsystem is mounted on the optomechanical subsystem structure - a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the spacecraft via a 1553 bus for command and control and via Spacewire links for science data This presentation describes the architecture of the instrument at the end of the phase C (Detailed Design Review), the expected performance, the technological key challenges and preliminary test results obtained for different NISP subsystem breadboards and for the NISP Structural and Thermal model (STM)

    Flash illusions induced by visual, auditory, and audiovisual stimuli

    Get PDF
    When two objects are flashed at one location in close temporal proximity in the visual periphery, an intriguing illusion occurs whereby a single flash presented concurrently at another location appears to flash twice (the visual double-flash illusion: Chatterjee et al., 2011, Wilson & Singer, 1981). Here, for the first time, we investigate the time course of the effect, and directly compare it to the time course of the auditory (sound-induced flash illusion) effect, for both fission (single test flash, double inducer) and fusion (double test flash, single inducer) conditions, across stimulus onset asynchronies (SOAs) of 30 to 250 ms. In addition, using a novel audiovisual stimulus, we directly compare the cue strength of the two modalities, and whether they are additive in effect. The results show that the time course of fission and fusion is different for visual inducers, but not for auditory inducers. In audiovisual conditions, in situations of uncertainty, observers tended to follow the more reliable (auditory) cue. There was little evidence for a superadditive effect of auditory and visual cues; rather, observers tended to follow one or the other modality. The results suggest that the visually induced flash illusion and the auditory-induced effect may both stem from perceptual uncertainty, with the difference in time courses attributable to the lower temporal resolution of vision compared to audition

    ADVIDA : ein Datenbanksystem auf einer Anlage mit virtuellem Speicher

    No full text
    "information retrieval" beinhaltet aus der Sicht des Systembenutzers eine Hauptschwierigkeit: Er muß sich mit dem Wortschatz vertraut machen, der bei der Erstellung der Datenbank verwendet wurde. Es besteht immer die Gefahr, daß einige Benutzer und die Autoren der Datenbank die vorkommenden Begriffe in verschiedenem Sinne gebrauchen. In vielen FĂ€llen ist es darum unmöglich, sofort die richtige Frage zu stellen. Durch eine Reihe von Vorfragen muß im Dialog mit der Maschine die richtige Frage erst erarbeitet werden. NatĂŒrlich ist ein solches Verfahren nur bei kurzen Antwortzeiten durchfĂŒhrbar. Aus diesem Grunde wird man von einem guten Datenbanksystem erwarten, daß die Fragen jederzeit direkt von einer Datenstation gestellt werden können. Der Aufwand fĂŒr ein solches Datenbanksystem ist bei vielen Betriebssystemen allerdings sehr hoch. Das Programm, das den Verkehr zu den Datenstationen und Randomspeichern regelt, muß stĂ€ndig im Hauptspeicher aktiv sein. Außerdem ist in der Regel ein Teil der vochandenen Datenstationen fest mit dem Datenbanksystem verbunden und fĂŒr andere Aufgaben nicht verfĂŒgbar. Die meisten Datenbanksysteme, die direkte Anfragen ĂŒber Datenstationen erlauben, beanspruchen darum dauernd einen festen Teil des Hauptspeichers und eine feste Verbindung zu einigen Datenstationen. Diese feste Zuordnung stört selbstverstĂ€ndlich nicht, wenn tĂ€glich eine große Zahl von Anfragen an das Systemgestellt werden. Die feste Zuordnung ist aber sehr teuer, wenn das System nur gelagentlich benutzt wird, und wenn der Auskunftsdienst ĂŒber den Rechner nur eine Nebenaufgabe des Rechenzentrums ist. Im Retriehssystern TSS ist eine solche Zuordnung von Hauptspeicher oder Datenstationen zu dem Datenbanksystem nicht notwendig. ADVIDA muß zwar dauernd virtuell resident sein, aber nur ein kleiner Teil des Systems ist zu einer bestimmten Zeit im realen Speicher. Dies regelt sich automatisch nach den momentanen BedĂŒrfnissen. Die Zugriffsmethode RTAM (resident terminal access method) vermeidet auch eine feste Zuordnung von Datenstationen zu dem System. Die Verbindung zwischen einer Datenstation und ADVIDA wird erst hergestellt, wenn sich ein Benutzer des Datenbanksystems an einer Datenstation meldet. Die Datenstation wird dann durch das Betriebssystem dem Datenbanksystem zugeordnet. ADVIDA lĂ€uft neben dem normalen Timesharingbetrieb im TSS. Wir mußten deshalb bei der Konzeption und Programmierung sorqfĂ€ltig darauf achten, daß ADVIDA sehr ökonomisch arbeitet und keine negativen RĂŒckwirkungen auf den Timesharingbetrieb hat. Wir haben daher systematisches Durchsuchen aller SĂ€tze der Datenbanken weitgehend vermieden. Statt dessen verwenden wir Indexdateien ("inverted files"), durch die die Suchprozesse erhehlich abgekĂŒrzt werden. Mit dem Plattenzugriff aber die sogenannten ''retrieval addresses" statt ĂŒber die SatzschlĂŒssel benutzen wie eine sehr ökonomische und fĂŒr das TSS charakteristische Zugriffsmethode zu den Datenbanken. Die Dateiorganisation der Datenbanken im Sinne des Betriebssystems TSS ist 11 virtual indcxed seguential11 ( DSORG=VI ). Die AbkĂŒrzung ADVIDA steht fĂŒr "Auskunft durch virtuelle Datenbanken". Die Abschnitte 2 bis 5 dieses Berichtes enthalten notwendige Informationen fĂŒr den normalen Benutzer des Systems. In den Abschnitten 6 bis 8 wird die Pflege bestehender Dateien sowie der Aufbau neuer Datenbanken erklĂ€rt, der Abschnitt 9 enthĂ€lt eine Beschreibung der internen Struktur des Auskunftsystems. Ein Anhang enthĂ€lt eine Zusammenfassung aller Anweisungen der Abfragesprache

    Flash illusions induced by visual, auditory, and audiovisual stimuli

    No full text

    Flash illusions induced by visual, auditory, and audiovisual stimuli

    No full text
    When two objects are flashed at one location in close temporal proximity in the visual periphery, an intriguing illusion occurs whereby a single flash presented concurrently at another location appears to flash twice (the visual double-flash illusion: Chatterjee et al., 2011, Wilson & Singer, 1981). Here, for the first time, we investigate the time course of the effect, and directly compare it to the time course of the auditory (sound-induced flash illusion) effect, for both fission (single test flash, double inducer) and fusion (double test flash, single inducer) conditions, across stimulus onset asynchronies (SOAs) of 30 to 250 ms. In addition, using a novel audiovisual stimulus, we directly compare the cue strength of the two modalities, and whether they are additive in effect. The results show that the time course of fission and fusion is different for visual inducers, but not for auditory inducers. In audiovisual conditions, in situations of uncertainty, observers tended to follow the more reliable (auditory) cue. There was little evidence for a superadditive effect of auditory and visual cues; rather, observers tended to follow one or the other modality. The results suggest that the visually induced flash illusion and the auditory-induced effect may both stem from perceptual uncertainty, with the difference in time courses attributable to the lower temporal resolution of vision compared to audition.This research was supported by the Australian Research Council's Discovery Project no. DP 120101474, awarded to David Alais

    Flash illusions induced by visual, auditory, and audiovisual stimuli

    No full text
    When two objects are flashed at one location in close temporal proximity in the visual periphery, an intriguing illusion occurs whereby a single flash presented concurrently at another location appears to flash twice (the visual double-flash illusion: Chatterjee et al., 2011, Wilson & Singer, 1981). Here, for the first time, we investigate the time course of the effect, and directly compare it to the time course of the auditory (sound-induced flash illusion) effect, for both fission (single test flash, double inducer) and fusion (double test flash, single inducer) conditions, across stimulus onset asynchronies (SOAs) of 30 to 250 ms. In addition, using a novel audiovisual stimulus, we directly compare the cue strength of the two modalities, and whether they are additive in effect. The results show that the time course of fission and fusion is different for visual inducers, but not for auditory inducers. In audiovisual conditions, in situations of uncertainty, observers tended to follow the more reliable (auditory) cue. There was little evidence for a superadditive effect of auditory and visual cues; rather, observers tended to follow one or the other modality. The results suggest that the visually induced flash illusion and the auditory-induced effect may both stem from perceptual uncertainty, with the difference in time courses attributable to the lower temporal resolution of vision compared to audition
    • 

    corecore