28 research outputs found

    Generative reconstruction of 3D volume elements for Ti-6Al-4V basketweave microstructure by optimization of CNN-based microstructural descriptors

    Full text link
    We present a methodology for the generative reconstruction of 3D Volume Elements (VE) for numerical multiscale analysis of Ti-6Al-4V processed by Additive Manufacturing (AM). The basketweave morphology, which is typically dominant in AM-processed Ti-6Al-4V, is analyzed in conventional Electron Backscatter Diffusion (EBSD) micrographs. Prior \b{eta}-grain reconstruction is performed to obtain the out-of-plane orientation of the observed grains leveraging Burgers orientation relationship. Convolutional Neural Network (CNN) - based microstructure descriptors are extracted from the 2D data, and used for cross-section-based optimization of pixel values on orthogonal planes in 3D, using the Microstructure Characterization and Reconstruction (MCR) implementation MCRpy [16]. In order to utilize MCRpy, which performs best for binary systems, the basketweave microstructure, which consists of up to twelve distinct grain orientations, is decomposed into several separate two-phase systems. Our reconstructions capture key characteristics of the titanium basketweave morphology and show qualitative resemblance to experimentally obtained 3D data. The preservation of volume fraction during assembly of the reconstruction remains an unadressed challenge at this stage

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Käytännön kosteikkosuunnittelu

    Get PDF
    Maatalouden vesiensuojelua edistetään monin tavoin. Ravinteita ja eroosioainesta sisältäviä valumavesiä pyritään puhdistamaan erilaisissa kosteikoissa. Tämä opas on kirjoitettu avuksi pienimuotoisten kosteikkojen perustamiseen. Oppaassa esitetään käytännönläheisesti kosteikon toteuttamisen eri vaiheet paikan valinnasta suunnitteluun ja rakentamiseen. Vuonna 2010 julkaistun painoksen tiedot on saatettu ajantasalle. Julkaisu on toteutettu osana Tehoa maatalouden vesiensuojeluun (TEHO) -hanketta ja päivitetty TEHO Plus -hankkeen toimesta. Oppaan toivotaan lisäävän kiinnostusta kosteikkojen suunnitteluun ja edelleen niiden rakentamiseen

    LUMINEU: a search for neutrinoless double beta decay based on ZnMoO 4 scintillating bolometers

    No full text
    The LUMINEU is designed to investigate the possibility to search for neutrinoless double beta decay in 100Mo by means of a large array of scintillating bolometers based on ZnMoO4 crystals enriched in 100Mo. High energy resolution and relatively fast detectors, which are able to measure both the light and the heat generated upon the interaction of a particle in a crystal, are very promising for the recognition and rejection of background events. We present the LUMINEU concepts and the experimental results achieved aboveground and underground with large-mass natural and enriched crystals. The measured energy resolution, the α/β discrimination power and the radioactive internal contamination are all within the specifications for the projected final LUMINEU sensitivity. Simulations and preliminary results confirm that the LUMINEU technology can reach zero background in the region of interest (around 3 MeV) with exposures of the order of hundreds kgXyears, setting the bases for a next generation 0v2β decay experiment capable to explore the inverted hierarchy region of the neutrino mass pattern

    The flux of ultra-high-energy cosmic rays along the supergalactic plane measured at the Pierre Auger Observatory

    No full text
    International audienceUltra-high-energy cosmic rays are known to be mainly of extragalactic origin, and their propagation is limited by energy losses, so their arrival directions are expected to correlate with the large-scale structure of the local Universe. In this work, we investigate the possible presence of intermediate-scale excesses in the flux of the most energetic cosmic rays from the direction of the supergalactic plane region using events with energies above 20 EeV recorded with the surface detector array of the Pierre Auger Observatory up to 31 December 2022, with a total exposure of 135,000 km^2 sr yr. The strongest indication for an excess that we find, with a post-trial significance of 3.1σ, is in the Centaurus region, as in our previous reports, and it extends down to lower energies than previously studied. We do not find any strong hints of excesses from any other region of the supergalactic plane at the same angular scale. In particular, our results do not confirm the reports by the Telescope Array collaboration of excesses from two regions in the Northern Hemisphere at the edge of the field of view of the Pierre Auger Observatory. With a comparable exposure, our results in those regions are in good agreement with the expectations from an isotropic distribution

    Large-scale cosmic ray anisotropies with 19 years of data from the Pierre Auger Observatory

    No full text
    International audienceResults are presented for the measurement of large-scale anisotropies in the arrival directions of ultra-high-energy cosmic rays detected at the Pierre Auger Observatory during 19 years of operation, prior to AugerPrime, the upgrade of the Observatory. The 3D dipole amplitude and direction are reconstructed above 44\,EeV in four energy bins. Besides the established dipolar anisotropy in right ascension above 88\,EeV, the Fourier amplitude of the 88 to 1616\,EeV energy bin is now also above the 5σ5\sigma discovery level. No time variation of the dipole moment above 88\,EeV is found, setting an upper limit to the rate of change of such variations of 0.3%0.3\% per year at the 95%95\% confidence level. Additionally, the results for the angular power spectrum are shown, demonstrating no other statistically significant multipoles. The results for the equatorial dipole component down to 0.030.03\,EeV are presented, using for the first time a data set obtained with a trigger that has been optimized for lower energies. Finally, model predictions are discussed and compared with observations, based on two source emission scenarios obtained in the combined fit of spectrum and composition above 0.60.6\,EeV

    Number of Hajj Pilgrims Departured(1) to the Holyland of Mecca by Province, 2012–2015

    Full text link
    The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, (secθ)max, sensitive to the mass composition of cosmic rays above 3×1018 eV. By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understanding of shower modeling that must be resolved before the mass composition can be inferred from (secθ)max
    corecore