76 research outputs found

    Autocrine IGF-1 Action in Adipocytes Controls Systemic IGF-1 Concentrations and Growth

    Get PDF
    OBJECTIVE—IGF-1 and the IGF-1 receptor (IGF-1R) have been implicated in the regulation of adipocyte differentiation and lipid accumulation in vitro

    Role of microRNAs in diabetes and its cardiovascular complications

    Get PDF
    Diabetes is the most common metabolic disorder and is recognized as one of the most important health threats of our time. MicroRNAs (miRNAs) are a novel group of non-coding small RNAs that have been implicated in a variety of physiological processes, including glucose homeostasis. Recent research has suggested that miRNAs play a critical role in the pathogenesis of diabetes and its related cardiovascular complications. This review focuses on the aberrant expression of miRNAs in diabetes and examines their role in the pathogenesis of endothelial dysfunction, cardiovascular disease, and diabetic retinopathy. Furthermore, we discuss the potential role of miRNAs as blood biomarkers and examine the potential of therapeutic interventions targeting miRNAs in diabetes

    A Spatio-Temporal Analysis of Matrix Protein and Nucleocapsid Trafficking during Vesicular Stomatitis Virus Uncoating

    Get PDF
    To study VSV entry and the fate of incoming matrix (M) protein during virus uncoating we used recombinant viruses encoding M proteins with a C-terminal tetracysteine tag that could be fluorescently labeled using biarsenical (Lumio) compounds. We found that uncoating occurs early in the endocytic pathway and is inhibited by expression of dominant-negative (DN) Rab5, but is not inhibited by DN-Rab7 or DN-Rab11. Uncoating, as defined by the separation of nucleocapsids from M protein, occurred between 15 and 20 minutes post-entry and did not require microtubules or an intact actin cytoskeleton. Unexpectedly, the bulk of M protein remained associated with endosomal membranes after uncoating and was eventually trafficked to recycling endosomes. Another small, but significant fraction of M distributed to nuclear pore complexes, which was also not dependent on microtubules or polymerized actin. Quantification of fluorescence from high-resolution confocal micrographs indicated that after membrane fusion, M protein diffuses across the endosomal membrane with a concomitant increase in fluorescence from the Lumio label which occurred soon after the release of RNPs into the cytoplasm. These data support a new model for VSV uncoating in which RNPs are released from M which remains bound to the endosomal membrane rather than the dissociation of M protein from RNPs after release of the complex into the cytoplasm following membrane fusion

    Live imaging of leukocyte recruitment in a zebrafish model of chemical liver injury

    Get PDF
    Studying early immune responses to organ damage in situ requires animal models amenable to intravital imaging. Here, we used transparent zebrafish larvae, a powerful animal model for innate immunity, to measure leukocyte recruitment to damaged livers. Bath application of metronidazole (Mtz) to fish expressing nitroreductase (NTR) under a liver-specific promoter damaged the organ within 24 hours causing oxidative stress, distorted liver morphology, accumulation of TUNEL-positive cells, and transcriptional upregulation of apoptotic and antioxidant genes. Inflammatory gene transcription in damaged hepatocytes was attenuated. In line with predominant apoptosis, macrophages were massively recruited into Mtz/NTR-damaged livers. By contrast, neutrophil infiltration was more variable and delayed, consistent with less abundant necrosis and an attenuated inflammatory capacity of damaged hepatocytes

    Proteomic Analysis of Fusarium solani Isolated from the Asian Longhorned Beetle, Anoplophora glabripennis

    Get PDF
    Wood is a highly intractable food source, yet many insects successfully colonize and thrive in this challenging niche. Overcoming the lignin barrier of wood is a key challenge in nutrient acquisition, but full depolymerization of intact lignin polymers has only been conclusively demonstrated in fungi and is not known to occur by enzymes produced by insects or bacteria. Previous research validated that lignocellulose and hemicellulose degradation occur within the gut of the wood boring insect, Anoplophora glabripennis (Asian longhorned beetle), and that a fungal species, Fusarium solani (ATCC MYA 4552), is consistently associated with the larval stage. While the nature of this relationship is unresolved, we sought to assess this fungal isolate's ability to degrade lignocellulose and cell wall polysaccharides and to extract nutrients from woody tissue. This gut-derived fungal isolate was inoculated onto a wood-based substrate and shotgun proteomics using Multidimensional Protein Identification Technology (MudPIT) was employed to identify 400 expressed proteins. Through this approach, we detected proteins responsible for plant cell wall polysaccharide degradation, including proteins belonging to 28 glycosyl hydrolase families and several cutinases, esterases, lipases, pectate lyases, and polysaccharide deacetylases. Proteinases with broad substrate specificities and ureases were observed, indicating that this isolate has the capability to digest plant cell wall proteins and recycle nitrogenous waste under periods of nutrient limitation. Additionally, several laccases, peroxidases, and enzymes involved in extracellular hydrogen peroxide production previously implicated in lignin depolymerization were detected. In vitro biochemical assays were conducted to corroborate MudPIT results and confirmed that cellulases, glycosyl hydrolases, xylanases, laccases, and Mn- independent peroxidases were active in culture; however, lignin- and Mn- dependent peroxidase activities were not detected While little is known about the role of filamentous fungi and their associations with insects, these findings suggest that this isolate has the endogenous potential to degrade lignocellulose and extract nutrients from woody tissue

    Observation of the Decay B=> J/psi eta K and Search for X(3872)=> J/psi eta

    Full text link
    We report the observation of the BB meson decay B±J/ψηK±B^\pm\to J/\psi \eta K^\pm and evidence for the decay B0J/ψηKS0B^0\to J/\psi \eta K^0_S, using {90} million BBbarBBbar events collected at the \ensuremath{\Upsilon{(4S)}}\xspace resonance with the BaBarBaBar detector at the PEP-II e+ee^+ e^- asymmetric-energy storage ring. We obtain branching fractions of B\cal{B}(B±J/ψηK±(B^\pm\to J/\psi \eta K^{\pm})=(10.8±2.3(stat.)±2.4(syst.))×105(10.8\pm 2.3(\rm{stat.})\pm 2.4(\rm{syst.}))\times 10^{-5} and B\cal{B}(B0J/ψηKS0(B^0\to J/\psi\eta K_{\rm{S}}^{0})=(8.4±2.6(stat.)±2.7(syst.))×105(8.4\pm 2.6(\rm{stat.})\pm 2.7(\rm{syst.}))\times 10^{-5}. We search for the new narrow mass state, the X(3872), recently reported by the Belle Collaboration, in the decay B^\pm\to X(3872)K^\pm, X(3872)\to \jpsi \eta and determine an upper limit of B\cal{B}(B^\pm \to X(3872) K^\pm \to \jpsi \eta K^\pm) <7.7×106<7.7\times 10^{-6} at 90% C.L.Comment: 7 pages and two figures, submitted to Phys. Rev. Lett

    Fluxes of water, sediments, and biogeochemical compounds in salt marshes

    Get PDF
    Tidal oscillations systematically flood salt marshes, transporting water, sediments, organic matter, and biogeochemical elements such as silica. Here we present a review of recent studies on these fluxes and their effects on both ecosystem functioning and morphological evolution of salt marshes. We reexamine a simplified model for the computation of water fluxes in salt marshes that captures the asymmetry in discharge between flood and ebb. We discuss the role of storm conditions on sediment fluxes both in tidal channels and on the marsh platform. We present recent methods and field instruments for the measurement of fluxes of organic matter. These methods will provide long-term data sets with fine temporal resolution that will help scientists to close the carbon budget in salt marshes. Finally, the main processes controlling fluxes of biogenic and dissolved silica in salt marshes are explained, with particular emphasis on the uptake by marsh macrophytes and diatoms

    Measurement of time-dependent CP asymmetries in B-0 -> D-(*)+/-pi(-/+) decays and constraints on sin(2 beta+gamma)

    Get PDF
    We present a measurement of CP-violating asymmetries in fully reconstructed B-0-->D((*)+/-)pi(-/+) decays in approximately 88x10(6) Y(4S)-->B (B) over bar decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. From a time-dependent maximum-likelihood fit we obtain the following for the CP-violating parameters: a=-0.022+/-0.038 (stat)+/-0.020 (syst), a(*)=-0.068+/-0.038 (stat)+/-0.020 (syst), c(lep)=+0.025+/-0.068 (stat)+/-0.033 (syst), and c(lep)(*)=+0.031+/-0.070 (stat)+/-0.033 (syst). Using other measurements and theoretical assumptions we interpret the results in terms of the angles of the Cabibbo-Kobayashi-Maskawa unitarity triangle, and find parallel tosin(2beta+gamma)parallel to>0.69 at 68% confidence level. We exclude the hypothesis of no CP violation [sin(2beta+gamma)=0] at 83% confidence level
    corecore