773 research outputs found

    ABCA1 polymorphism, a genetic risk factor of harm avoidance

    Get PDF
    Even though cholesterol homeostasis and self-harm behaviors have shown to be associated, gene polymorphisms of the cholesterol system have not been studied yet in the context of self-harm related personality traits. Here we present an association study between six ABCA1 polymorphisms and temperament scales measured by Cloninger's Temperament and Character Inventory on 253 young adults. An association between ABCA1 rs4149264 and harm avoidance has been observed. This association remained significant after Bonferroni correction. Haplotype analysis confirmed an independent association between rs4149264 and harm avoidance. ABCA1, a cholesterol homeostasis gene, is a candidate gene for harm related personality traits. © 2017 Hogrefe Publishing

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Multiplicity dependence of light (anti-)nuclei production in p–Pb collisions at sNN=5.02 TeV

    Get PDF
    The measurement of the deuteron and anti-deuteron production in the rapidity range −1 < y < 0 as a function of transverse momentum and event multiplicity in p–Pb collisions at √sNN = 5.02 TeV is presented. (Anti-)deuterons are identified via their specific energy loss dE/dx and via their time-of- flight. Their production in p–Pb collisions is compared to pp and Pb–Pb collisions and is discussed within the context of thermal and coalescence models. The ratio of integrated yields of deuterons to protons (d/p) shows a significant increase as a function of the charged-particle multiplicity of the event starting from values similar to those observed in pp collisions at low multiplicities and approaching those observed in Pb–Pb collisions at high multiplicities. The mean transverse particle momenta are extracted from the deuteron spectra and the values are similar to those obtained for p and particles. Thus, deuteron spectra do not follow mass ordering. This behaviour is in contrast to the trend observed for non-composite particles in p–Pb collisions. In addition, the production of the rare 3He and 3He nuclei has been studied. The spectrum corresponding to all non-single diffractive p-Pb collisions is obtained in the rapidity window −1 < y < 0 and the pT-integrated yield dN/dy is extracted. It is found that the yields of protons, deuterons, and 3He, normalised by the spin degeneracy factor, follow an exponential decrease with mass number

    Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The differential invariant yield as a function of transverse momentum (pT) of electrons from semileptonic heavy-flavour hadron decays was measured at midrapidity in central (0–10%), semi-central (30–50%) and peripheral (60–80%) lead–lead (Pb–Pb) collisions at √sNN = 5.02 TeV in the pT intervals 0.5–26 GeV/c (0–10% and 30–50%) and 0.5–10 GeV/c (60–80%). The production cross section in proton–proton (pp) collisions at √s = 5.02 TeV was measured as well in 0.5 < pT < 10 GeV/c and it lies close to the upper band of perturbative QCD calculation uncertainties up to pT = 5 GeV/c and close to the mean value for larger pT. The modification of the electron yield with respect to what is expected for an incoherent superposition of nucleon–nucleon collisions is evaluated by measuring the nuclear modification factor RAA. The measurement of the RAA in different centrality classes allows in-medium energy loss of charm and beauty quarks to be investigated. The RAA shows a suppression with respect to unity at intermediate pT, which increases while moving towards more central collisions. Moreover, the measured RAA is sensitive to the modification of the parton distribution functions (PDF) in nuclei, like nuclear shadowing, which causes a suppression of the heavy-quark production at low pT in heavy-ion collisions at LHC

    Analysis of the apparent nuclear modification in peripheral Pb–Pb collisions at 5.02 TeV

    No full text
    International audienceCharged-particle spectra at midrapidity are measured in Pb–Pb collisions at the centre-of-mass energy per nucleon–nucleon pair sNN=5.02 TeV and presented in centrality classes ranging from most central (0–5%) to most peripheral (95–100%) collisions. Possible medium effects are quantified using the nuclear modification factor ( RAA ) by comparing the measured spectra with those from proton–proton collisions, scaled by the number of independent nucleon–nucleon collisions obtained from a Glauber model. At large transverse momenta ( 8<pT<20GeV/c ), the average RAA is found to increase from about 0.15 in 0–5% central to a maximum value of about 0.8 in 75–85% peripheral collisions, beyond which it falls off strongly to below 0.2 for the most peripheral collisions. Furthermore, RAA initially exhibits a positive slope as a function of pT in the 8–20 GeV/c interval, while for collisions beyond the 80% class the slope is negative. To reduce uncertainties related to event selection and normalization, we also provide the ratio of RAA in adjacent centrality intervals. Our results in peripheral collisions are consistent with a PYTHIA-based model without nuclear modification, demonstrating that biases caused by the event selection and collision geometry can lead to the apparent suppression in peripheral collisions. This explains the unintuitive observation that RAA is below unity in peripheral Pb–Pb, but equal to unity in minimum-bias p–Pb collisions despite similar charged-particle multiplicities

    Anisotropic flow of identified particles in Pb-Pb collisions at sNN=5.02 {\sqrt{s}}_{\mathrm{NN}}=5.02 TeV

    No full text
    The elliptic (v2_{2}), triangular (v3_{3}), and quadrangular (v4_{4}) flow coefficients of π±^{±}, K±^{±}, p+p,Λ+Λ,KS0 \mathrm{p}+\overline{\mathrm{p}},\kern0.5em \Lambda +\overline{\Lambda},\kern0.5em {\mathrm{K}}_{\mathrm{S}}^0 , and the ϕ-meson are measured in Pb-Pb collisions at sNN=5.02 {\sqrt{s}}_{\mathrm{NN}}=5.02 TeV. Results obtained with the scalar product method are reported for the rapidity range |y| < 0.5 as a function of transverse momentum, pT_{T}, at different collision centrality intervals between 0–70%, including ultra-central (0–1%) collisions for π±^{±}, K±^{±}, and p+p \mathrm{p}+\overline{\mathrm{p}} . For pT_{T} < 3 GeV/c, the flow coefficients exhibit a particle mass dependence. At intermediate transverse momenta (3 < pT_{T} < 8–10 GeV/c), particles show an approximate grouping according to their type (i.e., mesons and baryons). The ϕ-meson v2_{2}, which tests both particle mass dependence and type scaling, follows p+p \mathrm{p}+\overline{\mathrm{p}} v2_{2} at low pT_{T} and π±^{±} v2_{2} at intermediate pT_{T}. The evolution of the shape of vn_{n}(pT_{T}) as a function of centrality and harmonic number n is studied for the various particle species. Flow coefficients of π±^{±}, K±^{±}, and p+p \mathrm{p}+\overline{\mathrm{p}} for pT_{T} < 3 GeV/c are compared to iEBE-VISHNU and MUSIC hydrodynamical calculations coupled to a hadronic cascade model (UrQMD). The iEBE-VISHNU calculations describe the results fairly well for pT_{T} < 2.5 GeV/c, while MUSIC calculations reproduce the measurements for pT_{T} < 1 GeV/c. A comparison to vn_{n} coefficients measured in Pb-Pb collisions at sNN=2.76 \sqrt{s_{\mathrm{NN}}}=2.76 TeV is also provided

    Production of charged pions, kaons, and (anti-)protons in Pb-Pb and inelastic pppp collisions at sNN\sqrt {s_{NN}} = 5.02 TeV

    No full text
    International audienceMid-rapidity production of π±\pi^{\pm}, K±\rm{K}^{\pm} and (pˉ\bar{\rm{p}})p measured by the ALICE experiment at the LHC, in Pb-Pb and inelastic pp collisions at sNN\sqrt{s_{\rm{NN}}} = 5.02 TeV, is presented. The invariant yields are measured over a wide transverse momentum (pTp_{\rm{T}}) range from hundreds of MeV/cc up to 20 GeV/cc. The results in Pb-Pb collisions are presented as a function of the collision centrality, in the range 0-90%. The comparison of the pTp_{\rm{T}}-integrated particle ratios, i.e. proton-to-pion (p/π\pi) and kaon-to-pion (K/π\pi) ratios, with similar measurements in Pb-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 2.76 TeV show no significant energy dependence. Blast-wave fits of the pTp_{\rm{T}} spectra indicate that in the most central collisions radial flow is slightly larger at 5.02 TeV with respect to 2.76 TeV. Particle ratios (p/π\pi, K/π\pi) as a function of pTp_{\rm{T}} show pronounced maxima at pTp_{\rm{T}} \approx 3 GeV/cc in central Pb-Pb collisions. At high pTp_{\rm{T}}, particle ratios at 5.02 TeV are similar to those measured in pp collisions at the same energy and in Pb-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 2.76 TeV. Using the pp reference spectra measured at the same collision energy of 5.02 TeV, the nuclear modification factors for the different particle species are derived. Within uncertainties, the nuclear modification factor is particle species independent for high pTp_{\rm{T}} and compatible with measurements at sNN\sqrt{s_{\rm{NN}}} = 2.76 TeV. The results are compared to state-of-the-art model calculations, which are found to describe the observed trends satisfactorily

    Multiplicity dependence of (multi-)strange hadron production in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    The production rates and the transverse momentum distribution of strange hadrons at mid-rapidity (y<0.5\left| y\right| < 0.5) are measured in proton-proton collisions at s\sqrt{s} = 13 TeV as a function of the charged particle multiplicity, using the ALICE detector at the LHC. The production rates of KS0\mathrm{K}^{0}_{S}, Λ\Lambda , Ξ\Xi , and Ω\Omega increase with the multiplicity faster than what is reported for inclusive charged particles. The increase is found to be more pronounced for hadrons with a larger strangeness content. Possible auto-correlations between the charged particles and the strange hadrons are evaluated by measuring the event-activity with charged particle multiplicity estimators covering different pseudorapidity regions. When comparing to lower energy results, the yields of strange hadrons are found to depend only on the mid-rapidity charged particle multiplicity. Several features of the data are reproduced qualitatively by general purpose QCD Monte Carlo models that take into account the effect of densely-packed QCD strings in high multiplicity collisions. However, none of the tested models reproduce the data quantitatively. This work corroborates and extends the ALICE findings on strangeness production in proton-proton collisions at 7 TeV
    corecore