224 research outputs found

    Geological respiration of a mountain belt revealed by the trace element rhenium

    Get PDF
    Oxidation of rock-derived, petrogenic, organic carbon (OCpetro) during weathering of sedimentary rocks is a major source of carbon dioxide (CO2) to the atmosphere. This geological respiration is thought to be enhanced by physical erosion, suggesting that mountain belts could release large amounts of CO2 to counter the CO2 sequestration achieved by the erosion, riverine transfer and oceanic burial of organic carbon from the terrestrial biosphere. However, OCpetro oxidation rates in mountain belts have not been quantified. Here we use rhenium (Re) as a proxy to track OCpetro oxidation in mountain river catchments of Taiwan, where existing measurements of physical erosion rate allow the controls on OCpetro oxidation to be assessed. Re has been shown to be closely associated with OCpetro in rocks and following oxidation during chemical weathering forms a soluble oxyanion (View the MathML source) which contributes to the dissolved load of rivers. Soils on meta-sedimentary rocks in Taiwan show that Re loss is coupled to OCpetro loss during weathering, confirming previous observations from soil profiles on sedimentary rocks elsewhere. In Taiwan rivers, dissolved Re flux increases with the catchment-average sediment yield, suggesting that physical erosion rate is a major control on OCpetro oxidation. Based on our current understanding of Re mobility during weathering, the dissolved Re flux can be used to quantify an upper bound on the OCpetro oxidation rate and the associated CO2 transfer. The estimated CO2 release from this mountain belt by OCpetro oxidation does not negate estimates of CO2 sequestration by burial of biospheric OC offshore. The findings are compared to OC transfers estimated for the Himalaya, where OCpetro oxidation in the mountain belt remains unconstrained. Together, these cases suggest that mountain building in the tropics can result in a net sink of OC which sequesters atmospheric CO2

    Os isotopic composition and Os and Re distribution in the active mound of the TAG hydrothermal system, Mid-Atlantic Ridge

    Get PDF
    Drilling during ODP Leg 158 took place on the active mound of the TAG hydrothermal field on the Mid-Atlantic Ridge. The dominant mineral precipitating from the hydrothermal fluid is pyrite. Its Re and Os concentration and the Os isotopic composition provide constraints on the nature of the hydrothermal fluid circulating in the TAG mound. The 187Os/186Os ratios of massive pyrite samples vary from 4.9 to 8.9. The highest ratios have been observed in the upper part of the sulfide mountain (<20 mbsf) and the lowest in the stockwork zone at ~80 mbsf. This range of Os isotopic compositions is likely the result of mixing of seawater with hydrothermal fluid. The Os concentrations are very low, ranging from 0.04 to 4.2 ppt, and the massive pyrite zone at the top of the mound is enriched in Os relative to the interior of the hydrothermal system. A hyperbolic relationship between Os isotopic composition and Os concentration reflects the systematic addition of seawater-derived Os to the hydrothermal Os component at stratigraphically shallower levels. From this relationship it is estimated that pyrite precipitating from the hydrothermal fluid contains 0.02 to 0.04 ppt Os provided the 187Os/186Os value of the fluid ranges from about 1.3 to 4.7. Because of the great mobility of Os in the high-temperature hydrothermal system, it is assumed that its partition coefficient between pyrite and hydrothermal fluid is <1. This implies that the hydrothermal fluid contains more than 0.02 ppt Os. The occurrence of anhydrite-rich lithologies at ~30–40 mbsf corroborates that seawater is penetrating the hydrothermal system and contaminating the hydrothermal fluid circulating in the upper part of the mound. This partly explains why the Os of sulfides that precipitated above this level has a strong seawater-like isotopic signature. In addition, the massive pyrite zone of the upper part of the TAG mound formed by accumulation of sulfides derived from chimneys and the fall-out material of the hydrothermal plume above the TAG field. Both sulfide components formed during mixing of seawater and hydrothermal fluid and their Os should also have a distinct seawater component. These processes, especially the entrainment of seawater, appear to control the distribution of Os and Re within the hydrothermal system. The Os enrichment in the upper part of the mound can be explained if the element is co-precipitated with sulfides or adsorbed on mineral surface during the accumulation of sulfides on the TAG mound. As a significant amount of Os can be dissolved in the hydrothermal fluid, remobilization of Os within the hydrothermal system could lead to further Os enrichment at the top of the mound but to very low Os concentrations in the stockwork zone. The Re concentrations indicate a distribution opposite to that of Os: the highest concentrations of about 60 ppb have been observed more than 15 mbsf, but the concentrations decrease from 50 to 2 ppb in samples from the top of the sulfide mound (<15 mbsf). The behavior of Re appears to be controlled by the redox conditions in the TAG hydrothermal system, which, in turn, could be determined by the relative proportions of oxidized seawater and reduced hydrothermal fluid. Deep within the mound, where the hydrothermal fluid component dominates, Re is rather immobile and becomes concentrated. In the upper part of the sulfide mound where larger quantities of seawater mix with the fluid, however, the redox potential should be more oxidizing, and Re would be more soluble and released to the ocean

    Extreme 54Cr-rich nano-oxides in the CI chondrite Orgueil -Implication for a late supernova injection into the Solar System

    Full text link
    Systematic variations in 54Cr/52Cr ratios between meteorite classes (Qin et al., 2010a; Trinquier et al., 2007) point to large scale spatial and/or temporal isotopic heterogeneity in the solar protoplanetary disk. Two explanations for these variations have been proposed, with important implications for the formation of the Solar System: heterogeneous seeding of the disk with dust from a supernova, or energetic-particle irradiation of dust in the disk. The key to differentiating between them is identification of the carrier(s) of the 54Cr anomalies. Here we report the results of our recent NanoSIMS imaging search for the 54Cr-rich carrier in the acid-resistant residue of the CI chondrite Orgueil. A total of 10 regions with extreme 54Cr-excesses ({\delta}54Cr values up to 1500 %) were found. Comparison between SEM, Auger and NanoSIMS analyses showed that these 54Cr-rich regions are associated with one or more sub-micron (typically less than 200 nm) Cr oxide grains, most likely spinels. Because the size of the NanoSIMS primary O- ion beam is larger than the typical grain size on the sample mount, the measured anomalies are lower limits, and we estimate that the actual 54Cr enrichments in three grains are at least 11 times Solar and in one of these may be as high as 50 times Solar. Such compositions strongly favor a Type II supernova origin. The variability in bulk 54Cr/52Cr between meteorite classes argues for a heterogeneous distribution of the 54Cr carrier in the solar protoplanetary disk following a late supernova injection event. Such a scenario is also supported by the O-isotopic distribution and variable abundances in different planetary materials of other presolar oxide and silicate grains from supernovae

    Evidence for weathering and volcanism during the PETM from Arctic Ocean and Peri-Tethys osmium isotope records

    Get PDF
    Sudden global warming during the Paleocene–Eocene Thermal Maximum (PETM, 55.9 Ma) occurred because of the rapid release of several thousand gigatonnes of isotopically light carbon into the oceans and atmosphere; however, the cause of this release is not well understood. Some studies have linked carbon injection to volcanic activity associated with the North Atlantic Igneous Province (NAIP), while others have emphasised carbon cycle feedbacks associated with orbital forcing. This study presents the osmium isotope compositions of mudrocks that were deposited during the PETM at four locations (one from the Arctic Ocean, and three from the Peri-Tethys). The Os-isotope records all exhibit a shift of similar magnitude towards relatively radiogenic values across the PETM. This observation confirms that there was a transient, global increase in the flux of radiogenic Os from the weathering of continental rocks in response to elevated temperatures at that time. The tectonic effects of NAIP volcanic emplacement near the onset of the PETM is recorded by anomalously radiogenic Os-isotope compositions of PETM-age Arctic Ocean samples, which indicate an interval of hydrographic restriction that can be linked tectonic uplift due to hotspot volcanism in the North Atlantic seaway. The Peri-Tethys data also document a transient, higher flux of unradiogenic osmium into the ocean near the beginning of the PETM, most likely from the weathering of young mafic rocks associated with the NAIP. These observations support the hypothesis that volcanism played a major role in triggering the cascade of environmental changes during the PETM, and highlight the influence of paleogeography on the Os isotope characteristics of marine water masses

    The spread of marine anoxia on the northern Tethys margin during the Paleocene-Eocene Thermal Maximum

    Get PDF
    Records of the paleoenvironmental changes that occurred during the Paleocene-Eocene Thermal Maximum (PETM) are preserved in sedimentary rocks along the margins of the former Tethys Ocean and Peri-Tethys. This paper presents new geochemical data that constrain paleoproductivity, sediment delivery, and seawater redox conditions, from three sites that were located in the Peri-Tethys region. Trace and major element, iron speciation, and biomarker data indicate that water column anoxia was established during episodes when inputs of land-derived higher plant organic carbon and highly weathered detrital clays and silts became relatively higher. Anoxic conditions are likely to have been initially caused by two primary processes: (i) oxygen consumption by high rates of marine productivity, initially stimulated by the rapid delivery of terrestrially derived organic matter and nutrients, and (ii) phosphorus regeneration from seafloor sediments. The role of the latter process requires further investigation before its influence on the spread of deoxygenated seawater during the PETM can be properly discerned. Other oxygen-forcing processes, such as temperature/salinity-driven water column stratification and/or methane oxidation, are considered to have been relatively less important in the study region. Organic carbon enrichments occur only during the initial stages of the PETM as defined by the negative carbon isotope excursions at each site. The lack of observed terminal stage organic carbon enrichment does not support a link between PETM climate recovery and the sequestration of excess atmospheric CO2 as organic carbon in this region; such a feedback may, however, have been important in the early stages of the PETM

    The amyloid imaging for the prevention of Alzheimer's disease consortium: A European collaboration with global impact

    Get PDF
    Background: Amyloid-β (Aβ) accumulation is considered the earliest pathological change in Alzheimer's disease (AD). The Amyloid Imaging to Prevent Alzheimer's Disease (AMYPAD) consortium is a collaborative European framework across European Federation of Pharmaceutical Industries Associations (EFPIA), academic, and ‘Small and Medium-sized enterprises’ (SME) partners aiming to provide evidence on the clinical utility and cost-effectiveness of Positron Emission Tomography (PET) imaging in diagnostic work-up of AD and to support clinical trial design by developing optimal quantitative methodology in an early AD population. The AMYPAD studies: In the Diagnostic and Patient Management Study (DPMS), 844 participants from eight centres across three clinical subgroups (245 subjective cognitive decline, 342 mild cognitive impairment, and 258 dementia) were included. The Prognostic and Natural History Study (PNHS) recruited pre-dementia subjects across 11 European parent cohorts (PCs). Approximately 1600 unique subjects with historical and prospective data were collected within this study. PET acquisition with [18F]flutemetamol or [18F]florbetaben radiotracers was performed and quantified using the Centiloid (CL) method. Results: AMYPAD has significantly contributed to the AD field by furthering our understanding of amyloid deposition in the brain and the optimal methodology to measure this process. Main contributions so far include the validation of the dual-time window acquisition protocol to derive the fully quantitative non-displaceable binding potential (BPND), assess the value of this metric in the context of clinical trials, improve PET-sensitivity to emerging Aβ burden and utilize its available regional information, establish the quantitative accuracy of the Centiloid method across tracers and support implementation of quantitative amyloid-PET measures in the clinical routine. Future steps: The AMYPAD consortium has succeeded in recruiting and following a large number of prospective subjects and setting up a collaborative framework to integrate data across European PCs. Efforts are currently ongoing in collaboration with ARIDHIA and ADDI to harmonize, integrate, and curate all available clinical data from the PNHS PCs, which will become openly accessible to the wider scientific community

    Extent of Structural Asymmetry in Homodimeric Proteins: Prevalence and Relevance

    Get PDF
    Most homodimeric proteins have symmetric structure. Although symmetry is known to confer structural and functional advantage, asymmetric organization is also observed. Using a non-redundant dataset of 223 high-resolution crystal structures of biologically relevant homodimers, we address questions on the prevalence and significance of asymmetry. We used two measures to quantify global and interface asymmetry, and assess the correlation of several molecular and structural parameters with asymmetry. We have identified rare cases (11/223) of biologically relevant homodimers with pronounced global asymmetry. Asymmetry serves as a means to bring about 2∶1 binding between the homodimer and another molecule; it also enables cellular signalling arising from asymmetric macromolecular ligands such as DNA. Analysis of these cases reveals two possible mechanisms by which possible infinite array formation is prevented. In case of homodimers associating via non-topologically equivalent surfaces in their tertiary structures, ligand-dependent mechanisms are used. For stable dimers binding via large surfaces, ligand-dependent structural change regulates polymerisation/depolymerisation; for unstable dimers binding via smaller surfaces that are not evolutionarily well conserved, dimerisation occurs only in the presence of the ligand. In case of homodimers associating via interaction surfaces with parts of the surfaces topologically equivalent in the tertiary structures, steric hindrance serves as the preventive mechanism of infinite array. We also find that homodimers exhibiting grossly symmetric organization rarely exhibit either perfect local symmetry or high local asymmetry. Binding of small ligands at the interface does not cause any significant variation in interface asymmetry. However, identification of biologically relevant interface asymmetry in grossly symmetric homodimers is confounded by the presence of similar small magnitude changes caused due to artefacts of crystallisation. Our study provides new insights regarding accommodation of asymmetry in homodimers

    N-acetylcysteine does not prevent contrast-induced nephropathy after cardiac catheterization in patients with diabetes mellitus and chronic kidney disease: a randomized clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with diabetes mellitus (DM) and chronic kidney disease (CKD) constitute to be a high-risk population for the development of contrast-induced nephropathy (CIN), in which the incidence of CIN is estimated to be as high as 50%. We performed this trial to assess the efficacy of <it>N</it>-acetylcysteine (NAC) in the prevention of this complication.</p> <p>Methods</p> <p>In a prospective, double-blind, placebo controlled, randomized clinical trial, we studied 90 patients undergoing elective diagnostic coronary angiography with DM and CKD (serum creatinine ≥ 1.5 mg/dL for men and ≥ 1.4 mg/dL for women). The patients were randomly assigned to receive either oral NAC (600 mg BID, starting 24 h before the procedure) or placebo, in adjunct to hydration. Serum creatinine was measured prior to and 48 h after coronary angiography. The primary end-point was the occurrence of CIN, defined as an increase in serum creatinine ≥ 0.5 mg/dL (44.2 μmol/L) or ≥ 25% above baseline at 48 h after exposure to contrast medium.</p> <p>Results</p> <p>Complete data on the outcomes were available on 87 patients, 45 of whom had received NAC. There were no significant differences between the NAC and placebo groups in baseline characteristics, amount of hydration, or type and volume of contrast used, except in gender (male/female, 20/25 and 34/11, respectively; P = 0.005) and the use of statins (62.2% and 37.8%, respectively; P = 0.034). CIN occurred in 5 out of 45 (11.1%) patients in the NAC group and 6 out of 42 (14.3%) patients in the placebo group (P = 0.656).</p> <p>Conclusion</p> <p>There was no detectable benefit for the prophylactic administration of oral NAC over an aggressive hydration protocol in patients with DM and CKD.</p> <p>Trial registration</p> <p>NCT00808795</p

    Mental health of refugees following state-sponsored repatriation from Germany

    Get PDF
    von Lersner U, Elbert T, Neuner F. Mental health of refugees following state-sponsored repatriation from Germany. BMC Psychiatry. 2008;8(1): 88.BACKGROUND: In recent years, Voluntary Assisted Return Programmes (VARPs) have received increasing funding as a potential way of reducing the number of refugees in EU member states. A number of factors may affect the mental well-being of returnees. These include adjustment to the home country following return, difficult living conditions, and long-term effects resulting from the severe traumatic stress that had originally driven the affected out of their homes. Little is known about the extent to which these and other factors may promote or inhibit the willingness of refugees to return to their country of origin. The present pilot study investigated refugees who returned to their country of origin after having lived in exile in Germany for some 13 years. METHODS: Forty-seven VARP participants were interviewed concerning their present living conditions, their views of their native country, and their attitudes towards a potential return prior to actually returning. 33 participants were interviewed nine months after returning to their country of origin. Mental health and well-being were assessed using the questionnaires Posttraumatic Stress Diagnostic Scale (PDS) and EUROHIS and the structured Mini International Neuropsychiatric Interview (M.I.N.I.).Our objectives were to examine the mental health status of refugees returning to their home country following an extended period of exile. We also aimed to assess the circumstances under which people decided to return, the current living conditions in their home country, and retrospective returnee evaluations of their decision to accept assisted return. RESULTS: Prior to returning to their home country, participants showed a prevalence rate of 53% for psychiatric disorders. After returning, this rate increased to a sizeable 88%. Substantial correlations were found between the living situation in Germany, the disposition to return, and mental health. For two thirds of the participants, the decision to return was not voluntary. CONCLUSION: Psychological strain among study participants was of a considerable magnitude. As a result of traumatic stress experienced during war and refuge, victims were vulnerable and not well equipped to cope with either post-migration stressors in exile or with a return to their country of origin. It is noteworthy that the majority returned under pressure from immigration authorities. Living conditions after return (such as housing, work, and health care) were poor and unstable. Participants also had great difficulty readapting to the cultural environment after having lived abroad for an average of 13 years. Current VARPs do not take these factors into account and are therefore not able to assist in a humanitarian reintegration of voluntary returnees

    Identification of a Small TAF Complex and Its Role in the Assembly of TAF-Containing Complexes

    Get PDF
    TFIID plays a role in nucleating RNA polymerase II preinitiation complex assembly on protein-coding genes. TFIID is a multisubunit complex comprised of the TATA box binding protein (TBP) and 14 TBP-associated factors (TAFs). Another class of multiprotein transcriptional regulatory complexes having histone acetyl transferase (HAT) activity, and containing TAFs, includes TFTC, STAGA and the PCAF/GCN5 complex. Looking for as yet undiscovered subunits by a proteomic approach, we had identified TAF8 and SPT7L in human TFTC preparations. Subsequently, however, we demonstrated that TAF8 was not a stable component of TFTC, but that it is present in a small TAF complex (SMAT), containing TAF8, TAF10 and SPT7L, that co-purified with TFTC. Thus, TAF8 is a subunit of both TFIID and SMAT. The latter has to be involved in a pathway of complex formation distinct from the other known TAF complexes, since these three histone fold (HF)-containing proteins (TAF8, TAF10 and SPT7L) can never be found together either in TFIID or in STAGA/TFTC HAT complexes. Here we show that TAF8 is absolutely necessary for the integration of TAF10 in a higher order TFIID core complex containing seven TAFs. TAF8 forms a heterodimer with TAF10 through its HF and proline rich domains, and also interacts with SPT7L through its C-terminal region, and the three proteins form a complex in vitro and in vivo. Thus, the TAF8-TAF10 and TAF10-SPT7L HF pairs, and also the SMAT complex, seem to be important regulators of the composition of different TFIID and/or STAGA/TFTC complexes in the nucleus and consequently may play a role in gene regulation
    corecore