238 research outputs found

    Effect of nanostructuration on compressibility of cubic BN

    Get PDF
    Compressibility of high-purity nanostructured cBN has been studied under quasi-hydrostatic conditions at 300 K up to 35 GPa using diamond anvil cell and angle-dispersive synchrotron X-ray powder diffraction. A data fit to the Vinet equation of state yields the values of the bulk modulus B0 of 375(4) GPa with its first pressure derivative B0' of 2.3(3). The nanometer grain size (\sim20 nm) results in decrease of the bulk modulus by ~9%

    FOREWARNS: development and multifaceted verification of enhanced regional-scale surface water flood forecasts

    Get PDF
    Surface water flooding (SWF) is a severe hazard associated with extreme convective rainfall, whose spatial and temporal sparsity belie the significant impacts it has on populations and infrastructure. Forecasting the intense convective rainfall that causes most SWF on the temporal and spatial scales required for effective flood forecasting remains extremely challenging. National-scale flood forecasts are currently issued for the UK and are well regarded amongst flood responders, but there is a need for complementary enhanced regional information. Here we present a novel SWF-forecasting method, FOREWARNS (Flood fOREcasts for Surface WAter at a RegioNal Scale), that aims to fill this gap in forecast provision. FOREWARNS compares reasonable worst-case rainfall from a neighbourhood-processed, convection-permitting ensemble forecast system against pre-simulated flood scenarios, issuing a categorical forecast of SWF severity. We report findings from a workshop structured around three historical flood events in Northern England, in which forecast users indicated they found the forecasts helpful and would use FOREWARNS to complement national guidance for action planning in advance of anticipated events. We also present results from objective verification of forecasts for 82 recorded flood events in Northern England from 2013–2022, as well as 725 daily forecasts spanning 2019–2022, using a combination of flood records and precipitation proxies. We demonstrate that FOREWARNS offers good skill in forecasting SWF risk, with high spatial hit rates and low temporal false alarm rates, confirming that user confidence is justified and that FOREWARNS would be suitable for meeting the user requirements of an enhanced operational forecast

    Equation of state and phonon frequency calculations of diamond at high pressures

    Full text link
    The pressure-volume relationship and the zone-center optical phonon frequency of cubic diamond at pressures up to 600 GPa have been calculated based on Density Functional Theory within the Local Density Approximation and the Generalized Gradient Approximation. Three different approaches, viz. a pseudopotential method applied in the basis of plane waves, an all-electron method relying on Augmented Plane Waves plus Local Orbitals, and an intermediate approach implemented in the basis of Projector Augmented Waves have been used. All these methods and approximations yield consistent results for the pressure derivative of the bulk modulus and the volume dependence of the mode Grueneisen parameter of diamond. The results are at variance with recent precise measurements up to 140 GPa. Possible implications for the experimental pressure determination based on the ruby luminescence method are discussed.Comment: 10 pages, 6 figure

    A new real-time PCR method to overcome significant quantitative inaccuracy due to slight amplification inhibition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Real-time PCR analysis is a sensitive DNA quantification technique that has recently gained considerable attention in biotechnology, microbiology and molecular diagnostics. Although, the cycle-threshold (<it>Ct</it>) method is the present "gold standard", it is far from being a standard assay. Uniform reaction efficiency among samples is the most important assumption of this method. Nevertheless, some authors have reported that it may not be correct and a slight PCR efficiency decrease of about 4% could result in an error of up to 400% using the <it>Ct </it>method. This reaction efficiency decrease may be caused by inhibiting agents used during nucleic acid extraction or copurified from the biological sample.</p> <p>We propose a new method (<it>Cy</it><sub><it>0</it></sub>) that does not require the assumption of equal reaction efficiency between unknowns and standard curve.</p> <p>Results</p> <p>The <it>Cy</it><sub><it>0 </it></sub>method is based on the fit of Richards' equation to real-time PCR data by nonlinear regression in order to obtain the best fit estimators of reaction parameters. Subsequently, these parameters were used to calculate the <it>Cy</it><sub><it>0 </it></sub>value that minimizes the dependence of its value on PCR kinetic.</p> <p>The <it>Ct</it>, second derivative (<it>Cp</it>), sigmoidal curve fitting method (<it>SCF</it>) and <it>Cy</it><sub><it>0 </it></sub>methods were compared using two criteria: precision and accuracy. Our results demonstrated that, in optimal amplification conditions, these four methods are equally precise and accurate. However, when PCR efficiency was slightly decreased, diluting amplification mix quantity or adding a biological inhibitor such as IgG, the <it>SCF</it>, <it>Ct </it>and <it>Cp </it>methods were markedly impaired while the <it>Cy</it><sub><it>0 </it></sub>method gave significantly more accurate and precise results.</p> <p>Conclusion</p> <p>Our results demonstrate that <it>Cy</it><sub><it>0 </it></sub>represents a significant improvement over the standard methods for obtaining a reliable and precise nucleic acid quantification even in sub-optimal amplification conditions overcoming the underestimation caused by the presence of some PCR inhibitors.</p

    Surface-focused Seismic Holography of Sunspots: I. Observations

    Full text link
    We present a comprehensive set of observations of the interaction of p-mode oscillations with sunspots using surface-focused seismic holography. Maps of travel-time shifts, relative to quiet-Sun travel times, are shown for incoming and outgoing p modes as well as their mean and difference. We compare results using phase-speed filters with results obtained with filters that isolate single p-mode ridges, and further divide the data into multiple temporal frequency bandpasses. The f mode is removed from the data. The variations of the resulting travel-time shifts with magnetic-field strength and with the filter parameters are explored. We find that spatial averages of these shifts within sunspot umbrae, penumbrae, and surrounding plage often show strong frequency variations at fixed phase speed. In addition, we find that positive values of the mean and difference travel-time shifts appear exclusively in waves observed with phase-speed filters that are dominated by power in the low-frequency wing of the p1 ridge. We assess the ratio of incoming to outgoing p-mode power using the ridge filters and compare surface-focused holography measurements with the results of earlier published p-mode scattering measurements using Fourier-Hankel decomposition.Comment: Solar Physics, accepte

    HighP–TNano-Mechanics of Polycrystalline Nickel

    Get PDF
    We have conducted highP–Tsynchrotron X-ray and time-of-flight neutron diffraction experiments as well as indentation measurements to study equation of state, constitutive properties, and hardness of nanocrystalline and bulk nickel. Our lattice volume–pressure data present a clear evidence of elastic softening in nanocrystalline Ni as compared with the bulk nickel. We show that the enhanced overall compressibility of nanocrystalline Ni is a consequence of the higher compressibility of the surface shell of Ni nanocrystals, which supports the results of molecular dynamics simulation and a generalized model of a nanocrystal with expanded surface layer. The analytical methods we developed based on the peak-profile of diffraction data allow us to identify “micro/local” yield due to high stress concentration at the grain-to-grain contacts and “macro/bulk” yield due to deviatoric stress over the entire sample. The graphic approach of our strain/stress analyses can also reveal the corresponding yield strength, grain crushing/growth, work hardening/softening, and thermal relaxation under highP–Tconditions, as well as the intrinsic residual/surface strains in the polycrystalline bulks. From micro-indentation measurements, we found that a low-temperature annealing (T < 0.4 Tm) hardens nanocrystalline Ni, leading to an inverse Hall–Petch relationship. We explain this abnormal Hall–Petch effect in terms of impurity segregation to the grain boundaries of the nanocrystalline Ni

    Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study

    Get PDF
    A41 Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study In: Addiction Science & Clinical Practice 2017, 12(Suppl 1): A4

    Dynamic assessment precursors: Soviet ideology, and Vygotsky

    Full text link

    Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    Get PDF
    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malarg\"ue and averaged monthly models, the utility of the GDAS data is shown

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society
    corecore