213 research outputs found

    Benchmarks for Academic Oncology Faculty

    Get PDF
    The role of clinical researchers is vital to cancer progress. The teaching, research, and leadership roles that academic oncologists hold need to be accounted for and appropriately compensated. National metrics are currently inexistent, but are necessary to move the oncology research field forward. Clinical research and routine clinical care must be harmoniously integrated without competing. This article reviews the national landscape of clinical cancer research and proposes a call for action

    Relativistic close coupling calculations for photoionization and recombination of Ne-like Fe XVII

    Get PDF
    Relativistic and channel coupling effects in photoionization and unified electronic recombination of Fe XVII are demonstrated with an extensive 60-level close coupling calculation using the Breit-Pauli R-matrix method. Photoionization and (e + ion) recombination calculations are carried out for the total and the level-specific cross sections, including the ground and several hundred excited bound levels of Fe XVII (up to fine structure levels with n = 10). The unified (e + ion) recombination calculations for (e + Fe XVIII --> Fe XVII) include both the non-resonant and resonant recombination (`radiative' and `dielectronic recombination' -- RR and DR). The low-energy and the high energy cross sections are compared from: (i) a 3-level calculation with 2s^2p^5 (^2P^o_{1/2,3/2}) and 2s2p^6 (^2S_{1/2}), and (ii) the first 60-level calculation with \Delta n > 0 coupled channels with spectroscopic 2s^2p^5, 2s2p^6, 2s^22p^4 3s, 3p, 3d, configurations, and a number of correlation configurations. Strong channel coupling effects are demonstrated throughout the energy ranges considered, in particular via giant photoexcitation-of-core (PEC) resonances due to L-M shell dipole transition arrays 2p^5 --> 2p^4 3s, 3d in Fe XIII that enhance effective cross sections by orders of magnitude. Comparison is made with previous theoretical and experimental works on photoionization and recombination that considered the relatively small low-energy region (i), and the weaker \Delta n = 0 couplings. While the 3-level results are inadequate, the present 60-level results should provide reasonably complete and accurate datasets for both photoionization and (e + ion) recombination of Fe~XVII in laboratory and astrophysical plasmas.Comment: 19 pages, 8 figures, Phys. Rev. A (submitted

    Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions

    Get PDF
    We review the most important experimental results from the first three years of nucleus-nucleus collision studies at RHIC, with emphasis on results from the STAR experiment, and we assess their interpretation and comparison to theory. The theory-experiment comparison suggests that central Au+Au collisions at RHIC produce dense, rapidly thermalizing matter characterized by: (1) initial energy densities above the critical values predicted by lattice QCD for establishment of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by constituent interactions of very short mean free path, established most probably at a stage preceding hadron formation; and (3) opacity to jets. Many of the observations are consistent with models incorporating QGP formation in the early collision stages, and have not found ready explanation in a hadronic framework. However, the measurements themselves do not yet establish unequivocal evidence for a transition to this new form of matter. The theoretical treatment of the collision evolution, despite impressive successes, invokes a suite of distinct models, degrees of freedom and assumptions of as yet unknown quantitative consequence. We pose a set of important open questions, and suggest additional measurements, at least some of which should be addressed in order to establish a compelling basis to conclude definitively that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.

    Clinical Profiles, Outcomes, and Sex Differences of Patients With STEMI: Findings From the NORIN-STEMI Registry

    Get PDF
    Background: Low- and middle-income countries account for most of the global burden of coronary artery disease. There is a paucity of data regarding epidemiology and outcomes for ST-segment elevation myocardial infarction (STEMI) patients in these regions. Objectives: The authors studied the contemporary characteristics, practice patterns, outcomes, and sex differences in patients with STEMI in India. Methods: NORIN-STEMI (North India ST-Segment Elevation Myocardial Infarction Registry) is an investigator-initiated prospective cohort study of patients presenting with STEMI at tertiary medical centers in North India. Results: Of 3,635 participants, 16% were female patients, one-third were &lt;50 years of age, 53% had a history of smoking, 29% hypertension, and 24% diabetes. The median time from symptom onset to coronary angiography was 71 hours; the majority (93%) presented first to a non-percutaneous coronary intervention (PCI)-capable facility. Almost all received aspirin, statin, P2Y12 inhibitors, and heparin on presentation; 66% were treated with PCI (98% femoral access) and 13% received fibrinolytics. The left ventricular ejection fraction was <40% in 46% of patients. The 30-day and 1-year mortality rates were 9% and 11%, respectively. Compared with male patients, female patients were less likely to receive PCI (62% vs 73%; P < 0.0001) and had a more than 2-fold greater 1-year mortality (22% vs 9%; adjusted HR: 2.1; 95% CI: 1.7-2.7; P <0.001). Conclusions: In this contemporary registry of patients with STEMI in India, female patients were less likely to receive PCI after STEMI and had a higher 1-year mortality compared with male patients. These findings have important public health implications, and further efforts are required to reduce these gaps

    Proton-Λ correlations in central Au+Au collisions at √s\u3csub\u3eNN\u3c/sub\u3e = 200 GeV

    Get PDF
    We report on p−Λ,p− ¯Λ¯ ,¯p¯−Λ, and ¯p¯− ¯Λ¯ correlation functions constructed in central Au-Au collisions at √sNN=200 GeV by the STAR experiment at RHIC. The proton and lambda source size is inferred from the p−Λ and p− ¯Λ¯; correlation functions. It is found to be smaller than the pion source size also measured by the STAR experiment at smaller transverse masses, in agreement with a scenario of a strong universal collective flow. The ¯p¯− Λ and p− ¯Λ¯ correlation functions, which are measured for the first time, exhibit a large anticorrelation. Annihilation channels and/or a negative real part of the spin-averaged scattering length must be included in the final-state interactions calculation to reproduce the measured correlation function

    Hadronization geometry from net-charge angular correlations on momentum subspace (η,ϕ\eta,\phi) in Au-Au collisions at sNN=130\sqrt{s_{NN}} = 130 GeV

    Get PDF
    We present the first measurements of charge-dependent correlations on angular difference variables η1η2\eta_1 - \eta_2 (pseudorapidity) and ϕ1ϕ2\phi_1 - \phi_2 (azimuth) for primary charged hadrons with transverse momentum 0.15pt20.15 \leq p_t \leq 2 GeV/cc and η1.3|\eta| \leq 1.3 from Au-Au collisions at sNN=130\sqrt{s_{NN}} = 130 GeV. We observe correlation structures not predicted by theory but consistent with evolution of hadron emission geometry with increasing centrality from one-dimensional fragmentation of color strings along the beam direction to an at least two-dimensional hadronization geometry along the beam and azimuth directions of a hadron-opaque bulk medium.Comment: 8 pages, 4 figure

    Forward Neutral Pion Production in p + p and d + Au Collisions at √ sNN = 200 GeV

    Get PDF
    Measurements of the production of forward π0 mesons from p+p and d+Au collisions at √sNN=200  GeV are reported. The p+p yield generally agrees with next-to-leading order perturbative QCD calculations. The d+Au yield per binary collision is suppressed as η increases, decreasing to ∼30% of the p+p yield at ⟨η⟩=4.00, well below shadowing expectations. Exploratory measurements of azimuthal correlations of the forward π0 with charged hadrons at η≈0 show a recoil peak in p+p that is suppressed in d+Au at low pion energy. These observations are qualitatively consistent with a saturation picture of the low-x gluon structure of heavy nuclei

    Transverse-momentum p\u3csub\u3et\u3c/sub\u3e correlations on (η,ϕ) from mean-p\u3csub\u3et\u3c/sub\u3e fluctuations in Au–Au collisions at √s\u3csub\u3eNN\u3c/sub\u3e = 200 GeV

    Get PDF
    We present first measurements of the pseudorapidity and azimuth (η, ϕ) binsize dependence of event-wise mean transverse-momentum ⟨pt⟩ fluctuations for Au–Au collisions at √sNN = 200 GeV. We invert that dependence to obtain pt autocorrelations on differences (η∆, ϕ∆) interpreted to represent velocity/temperature distributions on (η, ϕ). The general form of the autocorrelations suggests that the basic correlation mechanism is parton fragmentation. The autocorrelations vary rapidly with collision centrality, which suggests that fragmentation is strongly modified by a dissipative medium in the more central Au–Au collisions relative to peripheral or p–p collisions

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved
    corecore