5 research outputs found

    Physical and functional interaction between SET1/COMPASS complex component CFP-1 and a Sin3S HDAC complex in C. elegans.

    Get PDF
    The CFP1 CXXC zinc finger protein targets the SET1/COMPASS complex to non-methylated CpG rich promoters to implement tri-methylation of histone H3 Lys4 (H3K4me3). Although H3K4me3 is widely associated with gene expression, the effects of CFP1 loss vary, suggesting additional chromatin factors contribute to context dependent effects. Using a proteomics approach, we identified CFP1 associated proteins and an unexpected direct link between Caenorhabditis elegans CFP-1 and an Rpd3/Sin3 small (SIN3S) histone deacetylase complex. Supporting a functional connection, we find that mutants of COMPASS and SIN3 complex components genetically interact and have similar phenotypic defects including misregulation of common genes. CFP-1 directly binds SIN-3 through a region including the conserved PAH1 domain and recruits SIN-3 and the HDA-1/HDAC subunit to H3K4me3 enriched promoters. Our results reveal a novel role for CFP-1 in mediating interaction between SET1/COMPASS and a Sin3S HDAC complex at promoters

    Physical and functional interaction between the histone methyltransferase SET-2/SET1 complex and the histone deacetylase SIN-3S complex in C. elegans embryo

    No full text
    Les complexes histones mĂ©thyltransfĂ©rases SET1, hautement conservĂ©s de la levure aux mammifĂšres, sont ciblĂ©s aux rĂ©gions promotrices par la protĂ©ine CFP1/CXXC, rĂ©sultant en l’implĂ©mentation de la mĂ©thylation de la lysine 4 de l’histone H3 (H3K4me), modification post-traductionnelle influençant l’expression des gĂšnes selon le contexte chromatinien. La prĂ©sence de plusieurs complexes SET1 distincts dans diffĂ©rents systĂšmes modĂšles eucaryotes a compliquĂ© l’étude de leurs fonctions dans un contexte dĂ©veloppemental. Caenorhabditis elegans contient une seule protĂ©ine homologue de SET1, SET-2, et d’uniques homologues des autres sous-unitĂ©s du complexe, RBBP5, ASH2, WDR5, DPY30 et CFP1. Cependant, la composition biochimique du complexe n’a pas Ă©tĂ© dĂ©crite. En couplant des expĂ©riences de co-immunoprĂ©cipitation avec des analyses de spectromĂ©trie de masse, j’ai identifiĂ© le complexe SET-2/SET1 dans les embryons de C. elegans. D’autre part, j’ai montrĂ© que le complexe SET-2/SET1 co-immunoprĂ©cipite aussi un autre complexe conservĂ© modifiant la chromatine et j’ai mis en Ă©vidence les interactions mises en jeu entre ces deux complexes. Mon analyse gĂ©nĂ©tique a dĂ©montrĂ© que les mutants de perte de fonction des sous-unitĂ©s des deux complexes partagent des phĂ©notypes communs, en cohĂ©rence avec des fonctions dĂ©veloppementales communes. Le laboratoire a Ă©galement entrepris des expĂ©riences de transcriptomique et d’immunoprĂ©cipitation de la chromatine montrant un nouveau rĂŽle de CFP-1 dans le recrutement de ce complexe au niveau de sites spĂ©cifiques de la chromatine.The highly conserved SET1 family complexes are targeted by CFP1/CXXC protein to promoter regions through multivalent interactions to implement methylation of histone H3 Ly4 (H3K4me), a modification that correlates with gene expression depending on the chromatin context. The presence of distinct SET1 complexes in multiple eukaryotic model systems has hampered studies aimed at identifying the complete array of functions of SET1/MLL regulatory networks in a developmental context. Caenorhabditis elegans contains one SET1 protein, SET-2, one MLL-like protein, SET-16, and single homologs of RBBP5, ASH2, WDR5, DPY30 and CFP1. The biochemical composition of the complex however, has not been described. Through the use of co-immunoprecipitation coupled to mass spectrometry-based proteomics, I identified the SET-2/SET1 complex in C. elegans embryos. Most importantly, I showed that the SET-2/SET1 complex also co-immunoprecipitates another conserved chromatin-modifying complex and I highlighted the interactions involved between these two complexes. My genetic analysis revealed that loss of function mutants of the two complex subunits share common phenotypes, consistent with common developmental functions. The laboratory has also undertaken transcriptomic and chromatin immunoprecipitation experiments showing that CFP-1 has a role in the binding of this complex at specific chromatin regions

    Extracorporeal membrane oxygenation network organisation and clinical outcomes during the COVID-19 pandemic in Greater Paris, France: a multicentre cohort study

    No full text
    Erratum inCorrection to Lancet Respir Med 2021; published online April 19. https://doi.org/10.1016/S2213-2600(21)00096-5.International audienceBackground: In the Île-de-France region (henceforth termed Greater Paris), extracorporeal membrane oxygenation (ECMO) for severe acute respiratory distress syndrome (ARDS) was considered early in the COVID-19 pandemic. We report ECMO network organisation and outcomes during the first wave of the pandemic.Methods: In this multicentre cohort study, we present an analysis of all adult patients with laboratory-confirmed SARS-CoV-2 infection and severe ARDS requiring ECMO who were admitted to 17 Greater Paris intensive care units between March 8 and June 3, 2020. Central regulation for ECMO indications and pooling of resources were organised for the Greater Paris intensive care units, with six mobile ECMO teams available for the region. Details of complications (including ECMO-related complications, renal replacement therapy, and pulmonary embolism), clinical outcomes, survival status at 90 days after ECMO initiation, and causes of death are reported. Multivariable analysis was used to identify pre-ECMO variables independently associated with 90-day survival after ECMO.Findings: The 302 patients included who underwent ECMO had a median age of 52 years (IQR 45-58) and Simplified Acute Physiology Score-II of 40 (31-56), and 235 (78%) of whom were men. 165 (55%) were transferred after cannulation by a mobile ECMO team. Before ECMO, 285 (94%) patients were prone positioned, median driving pressure was 18 cm H2O (14-21), and median ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen was 61 mm Hg (IQR 54-70). During ECMO, 115 (43%) of 270 patients had a major bleeding event, 27 of whom had intracranial haemorrhage; 130 (43%) of 301 patients received renal replacement therapy; and 53 (18%) of 294 had a pulmonary embolism. 138 (46%) patients were alive 90 days after ECMO. The most common causes of death were multiorgan failure (53 [18%] patients) and septic shock (47 [16%] patients). Shorter time between intubation and ECMO (odds ratio 0·91 [95% CI 0·84-0·99] per day decrease), younger age (2·89 [1·41-5·93] for ≀48 years and 2·01 [1·01-3·99] for 49-56 years vs ≄57 years), lower pre-ECMO renal component of the Sequential Organ Failure Assessment score (0·67, 0·55-0·83 per point increase), and treatment in centres managing at least 30 venovenous ECMO cases annually (2·98 [1·46-6·04]) were independently associated with improved 90-day survival. There was no significant difference in survival between patients who had mobile and on-site ECMO initiation.Interpretation: Beyond associations with similar factors to those reported on ECMO for non-COVID-19 ARDS, 90-day survival among ECMO-assisted patients with COVID-19 was strongly associated with a centre's experience in venovenous ECMO during the previous year. Early ECMO management in centres with a high venovenous ECMO case volume should be advocated, by applying centralisation and regulation of ECMO indications, which should also help to prevent a shortage of resources

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
    corecore