36 research outputs found

    Gastrointestinal specific anxiety in irritable bowel syndrome: validation of the Japanese version of the visceral sensitivity index for university students

    Get PDF
    Objective: The visceral sensitivity index (VSI) is a useful self-report measure of the gastrointestinal symptom-specific anxiety (GSA) of patients with irritable bowel syndrome (IBS). Previous research has shown that worsening GSA in IBS patients is related to the severity of GI symptoms, suggesting that GSA is an important endpoint for intervention. However, there is currently no Japanese version of the VSI. We therefore translated the VSI into Japanese (VSI-J) and verified its reliability and validity.Material and methods: Participants were 349 university students aged 18 and 19 years and recruited from an academic class. We analyzed data from the VSI-J, Anxiety Sensitivity Index (ASI), Hospital Anxiety and Depression scale (HAD), and Irritable Bowel Syndrome Severity Index (IBS-SI). The internal consistency, stability, and factor structure of the VSI-J and its associations with anxiety, depression and severity measures were investigated.Results: The factor structure of the VSI-J is unidimensional and similar to that of the original VSI (Cronbach\u27s α = 0.93). Construct validity was demonstrated by significant correlations with ASI (r = 0.43, p < 0.0001), HAD-ANX (r = 0.19, p = 0.0003), and IBS-SI scores (r = 0.45, p < 0.0001). Furthermore, the VSI-J was a significant predictor of severity scores on the IBS-SI and demonstrated good discriminant (p < 0.0001) and incremental (p < 0.0001) validity.Conclusion: These findings suggest that the VSI-J is a reliable and valid measure of visceral sensitivity

    GA4GH: International policies and standards for data sharing across genomic research and healthcare.

    Get PDF
    The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images

    Get PDF
    Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions, and further differentiate MCI patients from normal states. Four cortical features, namely, gray matter volume, cortical thickness, surface area, and mean curvature, were explored for discriminative analysis among three groups including the stable MCI (sMCI), the converted MCI (cMCI), and the normal control (NC) groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI) were selected from the Alzheimer's Disease Neuroimaging Initiative. A sparse-constrained regression model based on the l2-1-norm was introduced to reduce the feature dimensionality and retrieve essential features for the discrimination of the three groups by using a support vector machine (SVM). An optimized strategy of feature addition based on the weight of each feature was adopted for the SVM classifier in order to achieve the best classification performance. The baseline cortical features combined with the longitudinal measurements for 2 years of follow-up data yielded prominent classification results. In particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5% sensitivity, and 100% specificity for the sMCI–cMCI comparison; 92.37% accuracy, 84.78% sensitivity, and 97.22% specificity for the cMCI–NC comparison; and 93.75% accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCI–NC comparison. The best performances obtained by the SVM classifier using the essential features were 5–40% more than those using all of the retained features. The feasibility of the cortical features for the recognition of anatomical patterns was certified; thus, the proposed method has the potential to improve the clinical diagnosis of sub-types of MCI and predict the risk of its conversion to Alzheimer's disease

    Quantitative 18F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients

    Get PDF
    Recent developments of tau Positron Emission Tomography (PET) allows assessment of regional neurofibrillary tangles (NFTs) deposition in human brain. Among the tau PET molecular probes, 18F-AV1451 is characterized by high selectivity for pathologic tau aggregates over amyloid plaques, limited non-specific binding in white and gray matter, and confined off-target binding. The objectives of the study are (1) to quantitatively characterize regional brain tau deposition measured by 18F-AV1451 PET in cognitively normal older adults (CN), mild cognitive impairment (MCI), and AD participants; (2) to evaluate the correlations between cerebrospinal fluid (CSF) biomarkers or Mini-Mental State Examination (MMSE) and 18F-AV1451 PET standardized uptake value ratio (SUVR); and (3) to evaluate the partial volume effects on 18F-AV1451 brain uptake.Methods: The study included total 115 participants (CN = 49, MCI = 58, and AD = 8) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed 18F-AV1451 PET images, structural MRIs, and demographic and clinical assessments were downloaded from the ADNI database. A reblurred Van Cittertiteration method was used for voxelwise partial volume correction (PVC) on PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. The parametric images of 18F-AV1451 SUVR relative to cerebellum were calculated. The ROI SUVR measurements from PVC and non-PVC SUVR images were compared. The correlation between ROI 18F-AV1451 SUVR and the measurements of MMSE, CSF total tau (t-tau), and phosphorylated tau (p-tau) were also assessed.Results:18F-AV1451 prominently specific binding was found in the amygdala, entorhinal cortex, parahippocampus, fusiform, posterior cingulate, temporal, parietal, and frontal brain regions. Most regional SUVRs showed significantly higher uptake of 18F-AV1451 in AD than MCI and CN participants. SUVRs of small regions like amygdala, entorhinal cortex and parahippocampus were statistically improved by PVC in all groups (p &lt; 0.01). Although there was an increasing tendency of 18F-AV-1451 SUVRs in MCI group compared with CN group, no significant difference of 18F-AV1451 deposition was found between CN and MCI brains with or without PVC (p &gt; 0.05). Declined MMSE score was observed with increasing 18F-AV1451 binding in amygdala, entorhinal cortex, parahippocampus, and fusiform. CSF p-tau was positively correlated with 18F-AV1451 deposition. PVC improved the results of 18F-AV-1451 tau deposition and correlation studies in small brain regions.Conclusion: The typical deposition of 18F-AV1451 tau PET imaging in AD brain was found in amygdala, entorhinal cortex, fusiform and parahippocampus, and these regions were strongly associated with cognitive impairment and CSF biomarkers. Although more deposition was observed in MCI group, the 18F-AV-1451 PET imaging could not differentiate the MCI patients from CN population. More tau deposition related to decreased MMSE score and increased level of CSF p-tau, especially in ROIs of amygdala, entorhinal cortex and parahippocampus. PVC did improve the results of tau deposition and correlation studies in small brain regions and suggest to be routinely used in 18F-AV1451 tau PET quantification

    Increased risk of irritable bowel syndrome in university students due to gastrointestinal symptom-specific anxiety

    Get PDF
    Background: Gastrointestinal symptom-specific anxiety (GSA) has been reported to impact symptom severity in irritable bowel syndrome (IBS), suggesting that GSA may be an important treatment outcome. The present study explored whether higher levels of GSA were associated with increased risk of having IBS, and whether individuals with IBS were at greater risk for severe gastrointestinal (GI) symptoms. Methods: Participants comprised 1156 university students. The Rome III modular questionnaire was used to assess for IBS. GSA was measured using the Japanese version of the Visceral Sensitivity Index (VSI). IBS-SI was used to assess severity of GI symptoms. Data were analyzed using univariate and multivariate logistic regression analysis. Results: The prevalence rate of IBS (provisional diagnosis, based on Rome III questionnaire responses) was 21%. Logistic regression analysis was performed using the VSI cutoff point as the independent variable, and the presence or absence of IBS as the dependent variable. Results indicate that for individuals above the VSI cutoff point, the adjusted odds ratio for having IBS was 2.64 (95% CI: 1.87-3.71). Furthermore, results indicate that in participants with high GSA, adjusted odds ratios for severity of IBS symptoms were 0.44 (95% CI: 0.33-0.58) for subclinical, 1.15 (95% CI: 0.90?1.46) for mild symptoms, 2.19 (95% CI: 1.57?3.07) for moderate symptoms, and 5.63 (95% CI: 2.24?14.15) for severe symptoms. Conclusion: Higher VSI scores were associated with having risk factors for IBS and greater severity of IBS symptoms

    Increased risk of irritable bowel syndrome in university students due to gastrointestinal symptom-specific anxiety

    No full text
    Background: Gastrointestinal symptom-specific anxiety (GSA) has been reported to impact symptom severity in irritable bowel syndrome (IBS), suggesting that GSA may be an important treatment outcome. The present study explored whether higher levels of GSA were associated with increased risk of having IBS, and whether individuals with IBS were at greater risk for severe gastrointestinal (GI) symptoms. Methods: Participants comprised 1156 university students. The Rome III modular questionnaire was used to assess for IBS. GSA was measured using the Japanese version of the Visceral Sensitivity Index (VSI). IBS-SI was used to assess severity of GI symptoms. Data were analyzed using univariate and multivariate logistic regression analysis. Results: The prevalence rate of IBS (provisional diagnosis, based on Rome III questionnaire responses) was 21%. Logistic regression analysis was performed using the VSI cutoff point as the independent variable, and the presence or absence of IBS as the dependent variable. Results indicate that for individuals above the VSI cutoff point, the adjusted odds ratio for having IBS was 2.64 (95% CI: 1.87-3.71). Furthermore, results indicate that in participants with high GSA, adjusted odds ratios for severity of IBS symptoms were 0.44 (95% CI: 0.33-0.58) for subclinical, 1.15 (95% CI: 0.90–1.46) for mild symptoms, 2.19 (95% CI: 1.57–3.07) for moderate symptoms, and 5.63 (95% CI: 2.24–14.15) for severe symptoms. Conclusion: Higher VSI scores were associated with having risk factors for IBS and greater severity of IBS symptoms
    corecore