97 research outputs found

    Fast and accurate modelling of longitudinal and repeated measures neuroimaging data

    Get PDF
    Despite the growing importance of longitudinal data in neuroimaging, the standard analysis methods make restrictive or unrealistic assumptions (e.g., assumption of Compound Symmetry—the state of all equal variances and equal correlations—or spatially homogeneous longitudinal correlations). While some new methods have been proposed to more accurately account for such data, these methods are based on iterative algorithms that are slow and failure-prone. In this article, we propose the use of the Sandwich Estimator (SwE) method which first estimates the parameters of interest with a simple Ordinary Least Square model and second estimates variances/covariances with the “so-called” SwE which accounts for the within-subject correlation existing in longitudinal data. Here, we introduce the SwE method in its classic form, and we review and propose several adjustments to improve its behaviour, specifically in small samples. We use intensive Monte Carlo simulations to compare all considered adjustments and isolate the best combination for neuroimaging data. We also compare the SwE method to other popular methods and demonstrate its strengths and weaknesses. Finally, we analyse a highly unbalanced longitudinal dataset from the Alzheimer's Disease Neuroimaging Initiative and demonstrate the flexibility of the SwE method to fit within- and between-subject effects in a single model. Software implementing this SwE method has been made freely available at http://warwick.ac.uk/tenichols/SwE

    Statistical analysis of longitudinal neuroimage data with linear mixed effects models

    Get PDF
    Longitudinal neuroimaging (LNI) studies are rapidly becoming more prevalent and growing in size. Today, no standardized computational tools exist for the analysis of LNI data and widely used methods are sub-optimal for the types of data encountered in real-life studies. Linear Mixed Effects (LME) modeling, a mature approach well known in the statistics community, offers a powerful and versatile framework for analyzing real-life LNI data. This article presents the theory behind LME models, contrasts it with other popular approaches in the context of LNI, and is accompanied with an array of computational tools that will be made freely available through FreeSurfer -a popular Magnetic Resonance Image (MRI) analysis software package. Our core contribution is to provide a quantitative empirical evaluation of the performance of LME and competing alternatives popularly used in prior longitudinal structural MRI studies, namely repeated measures ANOVA and the analysis of annualized longitudinal change measures (e.g. atrophy rate). In our experiments, we analyzed MRI-derived longitudinal hippocampal volume and entorhinal cortex thickness measurements from a public dataset consisting of Alzheimer's patients, subjects with mild cognitive impairment and healthy controls. Our results suggest that the LME approach offers superior statistical power in detecting longitudinal group differences

    Neuropsychiatric Disease Classification Using Functional Connectomics - Results of the Connectomics in NeuroImaging Transfer Learning Challenge

    Get PDF
    Large, open-source datasets, such as the Human Connectome Project and the Autism Brain Imaging Data Exchange, have spurred the development of new and increasingly powerful machine learning approaches for brain connectomics. However, one key question remains: are we capturing biologically relevant and generalizable information about the brain, or are we simply overfitting to the data? To answer this, we organized a scientific challenge, the Connectomics in NeuroImaging Transfer Learning Challenge (CNI-TLC), held in conjunction with MICCAI 2019. CNI-TLC included two classification tasks: (1) diagnosis of Attention-Deficit/Hyperactivity Disorder (ADHD) within a pre-adolescent cohort; and (2) transference of the ADHD model to a related cohort of Autism Spectrum Disorder (ASD) patients with an ADHD comorbidity. In total, 240 resting-state fMRI (rsfMRI) time series averaged according to three standard parcellation atlases, along with clinical diagnosis, were released for training and validation (120 neurotypical controls and 120 ADHD). We also provided Challenge participants with demographic information of age, sex, IQ, and handedness. The second set of 100 subjects (50 neurotypical controls, 25 ADHD, and 25 ASD with ADHD comorbidity) was used for testing. Classification methodologies were submitted in a standardized format as containerized Docker images through ChRIS, an open-source image analysis platform. Utilizing an inclusive approach, we ranked the methods based on 16 metrics: accuracy, area under the curve, F1-score, false discovery rate, false negative rate, false omission rate, false positive rate, geometric mean, informedness, markedness, Matthew’s correlation coefficient, negative predictive value, optimized precision, precision, sensitivity, and specificity. The final rank was calculated using the rank product for each participant across all measures. Furthermore, we assessed the calibration curves of each methodology. Five participants submitted their method for evaluation, with one outperforming all other methods in both ADHD and ASD classification. However, further improvements are still needed to reach the clinical translation of functional connectomics. We have kept the CNI-TLC open as a publicly available resource for developing and validating new classification methodologies in the field of connectomics

    White matter developmental trajectories associated with persistence and recovery of childhood stuttering

    Full text link
    Stuttering affects the fundamental human ability of fluent speech production, and can have a significant negative impact on an individual’s psychosocial development. While the disorder affects about 5% of all preschool children, approximately 80% of them recover naturally within a few years of stuttering onset. The pathophysiology and neuroanatomical development trajectories associated with persistence and recovery of stuttering are still largely unknown. Here, the first mixed longitudinal diffusion tensor imaging (DTI) study of childhood stuttering has been reported. A total of 195 high quality DTI scans from 35 children who stutter (CWS) and 43 controls between 3 and 12 years of age were acquired, with an average of three scans per child, each collected approximately a year apart. Fractional anisotropy (FA), a measure reflecting white matter structural coherence, was analyzed voxelâ wise to examine group and ageâ related differences using a linear mixedâ effects (LME) model. Results showed that CWS exhibited decreased FA relative to controls in the left arcuate fasciculus, underlying the inferior parietal and posterior temporal areas, and the mid body of corpus callosum. Further, white matter developmental trajectories reflecting growth rate of these tract regions differentiated children with persistent stuttering from those who recovered from stuttering. Specifically, a reduction in FA growth rate (i.e., slower FA growth with age) in persistent children relative to fluent controls in the left arcuate fasciculus and corpus callosum was found, which was not evident in recovered children. These findings provide first glimpses into the possible neural mechanisms of onset, persistence, and recovery of childhood stuttering. Hum Brain Mapp 38:3345â 3359, 2017. © 2017 Wiley Periodicals, Inc.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137362/1/hbm23590.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137362/2/hbm23590_am.pd

    Multi-modal characterization of rapid anterior hippocampal volume increase associated with aerobic exercise.

    Get PDF
    The hippocampus has been shown to demonstrate a remarkable degree of plasticity in response to a variety of tasks and experiences. For example, the size of the human hippocampus has been shown to increase in response to aerobic exercise. However, it is currently unknown what underlies these changes. Here we scanned sedentary, young to middle-aged human adults before and after a six-week exercise intervention using nine different neuroimaging measures of brain structure, vasculature, and diffusion. We then tested two different hypotheses regarding the nature of the underlying changes in the tissue. Surprisingly, we found no evidence of a vascular change as has been previously reported. Rather, the pattern of changes is better explained by an increase in myelination. Finally, we show hippocampal volume increase is temporary, returning to baseline after an additional six weeks without aerobic exercise. This is the first demonstration of a change in hippocampal volume in early to middle adulthood suggesting that hippocampal volume is modulated by aerobic exercise throughout the lifespan rather than only in the presence of age related atrophy. It is also the first demonstration of hippocampal volume change over a period of only six weeks, suggesting gross morphometric hippocampal plasticity occurs faster than previously thought
    corecore