146 research outputs found

    NASSAM: a server to search for and annotate tertiary interactions and motifs in three-dimensional structures of complex RNA molecules

    Get PDF
    Similarities in the 3D patterns of RNA base interactions or arrangements can provide insights into their functions and roles in stabilization of the RNA 3D structure. Nucleic Acids Search for Substructures and Motifs (NASSAM) is a graph theoretical program that can search for 3D patterns of base arrangements by representing the bases as pseudo-atoms. The geometric relationship of the pseudo-atoms to each other as a pattern can be represented as a labeled graph where the pseudo-atoms are the graph's nodes while the edges are the inter-pseudo-atomic distances. The input files for NASSAM are PDB formatted 3D coordinates. This web server can be used to identify matches of base arrangement patterns in a query structure to annotated patterns that have been reported in the literature or that have possible functional and structural stabilization implications. The NASSAM program is freely accessible without any login requirement at http://mfrlab.org/grafss/nassam/

    RNA CoSSMos: Characterization of Secondary Structure Motifs—a searchable database of secondary structure motifs in RNA three-dimensional structures

    Get PDF
    RNA secondary structure is important for designing therapeutics, understanding protein–RNA binding and predicting tertiary structure of RNA. Several databases and downloadable programs exist that specialize in the three-dimensional (3D) structure of RNA, but none focus specifically on secondary structural motifs such as internal, bulge and hairpin loops. The RNA Characterization of Secondary Structure Motifs (RNA CoSSMos) database is a freely accessible and searchable online database and website of 3D characteristics of secondary structure motifs. To create the RNA CoSSMos database, 2156 Protein Data Bank (PDB) files were searched for internal, bulge and hairpin loops, and each loop's structural information, including sugar pucker, glycosidic linkage, hydrogen bonding patterns and stacking interactions, was included in the database. False positives were defined, identified and reclassified or omitted from the database to ensure the most accurate results possible. Users can search via general PDB information, experimental parameters, sequence and specific motif and by specific structural parameters in the subquery page after the initial search. Returned results for each search can be viewed individually or a complete set can be downloaded into a spreadsheet to allow for easy comparison. The RNA CoSSMos database is automatically updated weekly and is available at http://cossmos.slu.edu

    WebFR3D—a server for finding, aligning and analyzing recurrent RNA 3D motifs

    Get PDF
    WebFR3D is the on-line version of ‘Find RNA 3D’ (FR3D), a program for annotating atomic-resolution RNA 3D structure files and searching them efficiently to locate and compare RNA 3D structural motifs. WebFR3D provides on-line access to the central features of FR3D, including geometric and symbolic search modes, without need for installing programs or downloading and maintaining 3D structure data locally. In geometric search mode, WebFR3D finds all motifs similar to a user-specified query structure. In symbolic search mode, WebFR3D finds all sets of nucleotides making user-specified interactions. In both modes, users can specify sequence, sequence–continuity, base pairing, base-stacking and other constraints on nucleotides and their interactions. WebFR3D can be used to locate hairpin, internal or junction loops, list all base pairs or other interactions, or find instances of recurrent RNA 3D motifs (such as sarcin–ricin and kink-turn internal loops or T- and GNRA hairpin loops) in any PDB file or across a whole set of 3D structure files. The output page provides facilities for comparing the instances returned by the search by superposition of the 3D structures and the alignment of their sequences annotated with pairwise interactions. WebFR3D is available at http://rna.bgsu.edu/webfr3d

    SARA: a server for function annotation of RNA structures

    Get PDF
    Recent interest in non-coding RNA transcripts has resulted in a rapid increase of deposited RNA structures in the Protein Data Bank. However, a characterization and functional classification of the RNA structure and function space have only been partially addressed. Here, we introduce the SARA program for pair-wise alignment of RNA structures as a web server for structure-based RNA function assignment. The SARA server relies on the SARA program, which aligns two RNA structures based on a unit-vector root-mean-square approach. The likely accuracy of the SARA alignments is assessed by three different P-values estimating the statistical significance of the sequence, secondary structure and tertiary structure identity scores, respectively. Our benchmarks, which relied on a set of 419 RNA structures with known SCOR structural class, indicate that at a negative logarithm of mean P-value higher or equal than 2.5, SARA can assign the correct or a similar SCOR class to 81.4% and 95.3% of the benchmark set, respectively. The SARA server is freely accessible via the World Wide Web at http://sgu.bioinfo.cipf.es/services/SARA/

    iPARTS: an improved tool of pairwise alignment of RNA tertiary structures

    Get PDF
    iPARTS is an improved web server for aligning two RNA 3D structures based on a structural alphabet (SA)-based approach. In particular, we first derive a Ramachandran-like diagram of RNAs by plotting nucleotides on a 2D axis using their two pseudo-torsion angles η and θ. Next, we apply the affinity propagation clustering algorithm to this η-θ plot to obtain an SA of 23-nt conformations. We finally use this SA to transform RNA 3D structures into 1D sequences of SA letters and continue to utilize classical sequence alignment methods to compare these 1D SA-encoded sequences and determine their structural similarities. iPARTS takes as input two RNA 3D structures in the PDB format and outputs their global alignment (for determining overall structural similarity), semiglobal alignments (for detecting structural motifs or substructures), local alignments (for finding locally similar substructures) and normalized local structural alignments (for identifying more similar local substructures without non-similar internal fragments), with graphical display that allows the user to visually view, rotate and enlarge the superposition of aligned RNA 3D structures. iPARTS is now available online at http://bioalgorithm.life.nctu.edu.tw/iPARTS/

    FASTR3D: a fast and accurate search tool for similar RNA 3D structures

    Get PDF
    FASTR3D is a web-based search tool that allows the user to fast and accurately search the PDB database for structurally similar RNAs. Currently, it allows the user to input three types of queries: (i) a PDB code of an RNA tertiary structure (default), optionally with specified residue range, (ii) an RNA secondary structure, optionally with primary sequence, in the dot-bracket notation and (iii) an RNA primary sequence in the FASTA format. In addition, the user can run FASTR3D with specifying additional filtering options: (i) the released date of RNA structures in the PDB database, and (ii) the experimental methods used to determine RNA structures and their least resolutions. In the output page, FASTR3D will show the user-queried RNA molecule, as well as user-specified options, followed by a detailed list of identified structurally similar RNAs. Particularly, when queried with RNA tertiary structures, FASTR3D provides a graphical display to show the structural superposition of the query structure and each of identified structures. FASTR3D is now available online at http://bioalgorithm.life.nctu.edu.tw/FASTR3D/

    Gene Essentiality Analyzed by In Vivo Transposon Mutagenesis and Machine Learning in a Stable Haploid Isolate of Candida albicans

    Get PDF
    This work was supported by European Research Council Advanced Award 340087 (RAPLODAPT) to J.B., the Dahlem Centre of Plant Sciences (DCPS) of the Freie Universität Berlin (R.K.), Israel Science Foundation grant no. 715/18 (R.S.), the Wellcome Trust (grants 086827, 075470, 101873, and 200208) and the MRC Centre for Medical Mycology (N006364/1) (N.A.R.G.). Data availability.All of the code and required dependencies for analysis of the TnSeq data are available at https://github.com/berman-lab/transposon-pipeline. Library insertion sequences are available at NCBI under project PRJNA490565 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA490565). Datasets S1 through S9 are available at https://doi.org/10.6084/m9.figshare.c.4251182.Peer reviewedPublisher PD

    RNA FRABASE version 1.0: an engine with a database to search for the three-dimensional fragments within RNA structures

    Get PDF
    The RNA FRABASE is a web-accessible engine with a relational database, which allows for the automatic search of user-defined, 3D RNA fragments within a set of RNA structures. This is a new tool to search and analyse RNA structures, directed at the 3D structure modelling. The user needs to input either RNA sequence(s) and/or secondary structure(s) given in a ‘dot-bracket’ notation. The algorithm searching for the requested 3D RNA fragments is very efficient. As of August 2007, the database contains: (i) RNA sequences and secondary structures, in the ‘dot-bracket’ notation, derived from 1065 protein data bank (PDB)-deposited RNA structures and their complexes, (ii) a collection of atom coordinates of unmodified and modified nucleotide residues occurring in RNA structures, (iii) calculated RNA torsion angles and sugar pucker parameters and (iv) information about base pairs. Advanced query involves filters sensitive to: modified residue contents, experimental method used and limits of conformational parameters. The output list of query-matching RNA fragments gives access to their coordinates in the PDB-format files, ready for direct download and visualization, conformational parameters and information about base pairs. The RNA FRABASE is automatically, monthly updated and is freely accessible at http://rnafrabase.ibch.poznan.pl (mirror at http://cerber.cs.put.poznan.pl/rnadb)

    Alignment-free local structural search by writhe decomposition

    Get PDF
    Motivation: Rapid methods for protein structure search enable biological discoveries based on flexibly defined structural similarity, unleashing the power of the ever greater number of solved protein structures. Projection methods show promise for the development of fast structural database search solutions. Projection methods map a structure to a point in a high-dimensional space and compare two structures by measuring distance between their projected points. These methods offer a tremendous increase in speed over residue-level structural alignment methods. However, current projection methods are not practical, partly because they are unable to identify local similarities
    corecore