15 research outputs found

    Stromal fibroblasts present in breast carcinomas promote tumor growth and angiogenesis through adrenomedullin secretion

    No full text
    International audienceTumor-or cancer-associated fibroblasts (TAFs or CAFs) are active players in tumorigenesis and exhibit distinct angiogenic and tumorigenic properties. Adrenomedullin (AM), a multifunctional peptide plays an important role in angiogenesis and tumor growth through its receptors calcitonin receptor-like receptor/receptor activity modifying protein-2 and-3 (CLR/RAMP2 and CLR/RAMP3). We show that AM and AM receptors mRNAs are highly expressed in CAFs prepared from invasive breast carcinoma when compared to normal fibroblasts. Immunostaining demonstrates the presence of immunoreactive AM and AM receptors in the CAFs (n = 9). The proliferation of CAFs is decreased by anti-AM antibody (αAM) and anti-AM receptors antibody (aAMR) treatment, suggesting that AM may function as a potent autocrine/paracrine growth factor. Systemic administration of aAMR reduced neovascularization of in vivo Matrigel plugs containing CAFs as demonstrated by reduced numbers of the vessel structures, suggesting that AM is one of the CAFs-derived factors responsible for endothelial cell-like and pericytes recruitment to built a neovascularization. We show that MCF-7 admixed with CAFs generated tumors of greater volume significantly different from the MCF-7 xenografts in nude mice due in part to the induced angiogenesis. aAMR and AM 22-52 therapies significantly suppressed the growth of CAFs/MCF-7 tumors. Histological examination of tumors treated with AM 22-52 and aAMR showed evidence of disruption of tumor vasculature with depletion of vascular endothelial cells, induced apoptosis and decrease of tumor cell proliferation. Our findings highlight the importance of CAFs-derived AM pathway in growth of breast carcinoma and in neovascularization by supplying and amplifying signals that are essential for pathologic angiogenesis

    Adrenomedullin blockade induces regression of tumor neovessels through interference with vascular endothelial-cadherin signalling.

    No full text
    International audienceThe cellular and molecular mechanisms by which adrenomedullin (AM) blockade suppresses tumor neovessels are not well defined. Herein, we show that AM blockade using anti-AM and anti-AM receptors antibodies targets vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), and induces regression of unstable nascent tumor neovessels. The underlying mechanism involved, and shown in vitro and in vivo in mice, is the disruption of the molecular engagement of the endothelial cell-specific junctional molecules vascular endothelial-cadherin (VE-cadherin)/β-catenin complex. AM blockade increases endothelial cell permeability by inhibiting cell-cell contacts predominantly through disruption of VE-cadherin/β-catenin/Akt signalling pathway, thereby leading to vascular collapse and regression of tumor neovessels. At a molecular level, we show that AM blockade induces tyrosine phosphorylation of VE-cadherin at a critical tyrosine, Tyr731, which is sufficient to prevent the binding of β-catenin to the cytoplasmic tail of VE-cadherin leading to the inhibition of cell barrier function. Furthermore, we demonstrate activation of Src kinase by phosphorylation on Tyr416, supporting a role of Src to phosphorylate Tyr731-VE-cadherin. In this model, Src inhibition impairs αAM and αAMR-induced Tyr731-VE-cadherin phosphorylation in a dose-dependent manner, indicating that Tyr731-VE-cadherin phosphorylation state is dependent on Src activation. We found that AM blockade induces β-catenin phosphorylation on Ser33/Ser37/Thr41 sites in both ECs and VSMCs both in vitro and in vivo in mice. These data suggest that AM blockade selectively induces regression of unstable tumor neovessels, through disruption of VE-cadherin signalling. Targeting AM system may present a novel therapeutic target to selectively disrupt assembly and induce regression of nascent tumor neovessels, without affecting normal stabilized vasculature

    Adrenomedullin Secreted by Melanoma Cells Promotes Melanoma Tumor Growth through Angiogenesis and Lymphangiogenesis

    No full text
    International audienceIntroduction: Metastatic melanoma is an aggressive tumor and can constitute a real therapeutic challenge despite the significant progress achieved with targeted therapies and immunotherapies, thus highlighting the need for the identification of new therapeutic targets. Adrenomedullin (AM) is a peptide with significant expression in multiple types of tumors and is multifunctional. AM impacts angiogenesis and tumor growth and binds to calcitonin receptor-like receptor/receptor activity-modifying protein 2 or 3 (CLR/RAMP2; CLR/RAMP3). Methods: In vitro and in vivo studies were performed to determine the functional role of AM in melanoma growth and tumor-associated angiogenesis and lymphangiogenesis. Results: In this study, AM and AM receptors were immunohistochemically localized in the tumoral compartment of melanoma tissue, suggesting that the AM system plays a role in melanoma growth. We used A375, SK-MEL-28, and MeWo cells, for which we demonstrate an expression of AM and its receptors; hypoxia induces the expression of AM in melanoma cells. The proliferation of A375 and SK-MEL-28 cells is decreased by anti-AM antibody (αAM) and anti-AMR antibodies (αAMR), supporting the fact that AM may function as a potent autocrine/paracrine growth factor for melanoma cells. Furthermore, migration and invasion of melanoma cells increased after treatment with AM and decreased after treatment with αAMR, thus indicating that melanoma cells are regulated by AM. Systemic administration of αAMR reduced neovascularization of in vivo Matrigel plugs containing melanoma cells, as demonstrated by reduced numbers of vessel structures, which suggests that AM is one of the melanoma cells-derived factors responsible for endothelial cell-like and pericyte recruitment in the construction of neovascularization. In vivo, αAMR therapy blocked angiogenesis and lymphangiogenesis and decreased proliferation in MeWo xenografts, thereby resulting in tumor regression. Histological examination of αAMR-treated tumors showed evidence of the disruption of tumor vascularity, with depletion of vascular endothelial cells and a significant decrease in lymphatic endothelial cells. Conclusions: The expression of AM by melanoma cells promotes tumor growth and neovascularization by supplying/amplifying signals for neoangiogenesis and lymphangiogenesis

    Role of the Tyrosine Phosphatase SHP-2 in Mediating Adrenomedullin Proangiogenic Activity in Solid Tumors

    No full text
    International audienceVE-cadherin is an essential adhesion molecule in endothelial adherens junctions, and the integrity of these complexes is thought to be regulated by VE-cadherin tyrosine phosphorylation. We have previously shown that adrenomedullin (AM) blockade correlates with elevated levels of phosphorylated VE-cadherin (pVE-cadherin Y731 ) in endothelial cells, associated with impaired barrier function and a persistent increase in vascular endothelial cell permeability. However, the mechanism underlying this effect is unknown. In this article, we demonstrate that the AM-mediated dephosphorylation of pVE-cadherin Y731 takes place through activation of the tyrosine phosphatase SHP-2, as judged by the rise of its active fraction phosphorylated at tyrosine 542 (pSHP-2 Y542 ) in HUVECs and glioblastoma-derived-endothelial cells. Both pre-incubation of HUVECs with SHP-2 inhibitors NSC-87877 and SHP099 and SHP-2 silencing hindered AM-induced dephosphorylation of pVE-cadherin Y731 in a dose dependent-manner, showing the role of SHP-2 in the regulation of endothelial cell contacts. Furthermore, SHP-2 inhibition impaired AM-induced HUVECs differentiation into cord-like structures in vitro and impeded AM-induced neovascularization in in vivo Matrigel plugs bioassays. Subcutaneously transplanted U87-glioma tumor xenograft mice treated with AM-receptors-blocking antibodies showed a decrease in pSHP-2 Y542 associated with VE-cadherin in nascent tumor vasculature when compared to control IgG-treated xenografts. Our findings show that AM acts on VE-cadherin dynamics through pSHP-2 Y542 to finally modulate cell-cell junctions in the angiogenesis process, thereby promoting a stable and functional tumor vasculature

    Adrenomedullin in the growth modulation and differentiation of acute myeloid leukemia cells

    Get PDF
    Adrenomedullin (ADM) is a regulatory peptide endowed with multiple biological effects, including the regulation of blood pressure, cell growth and innate host defence. In the present study, we demonstrated that ADM signaling could be involved in the impaired cellular differentiation of myeloid leukemia cells to mature granulocytes or monocytes by modulating RAMPs/CRLR expression, PI3K/Akt cascade and the ERK/MAPK signaling pathway. When exogenously administered to in vitro cultures of HL60 promyelocytic leukemia cells, ADM was shown to exert a strong proliferative effect with minimal upregulation in the expression level of monocyte antigen CD14. Notably, the experimental inhibition of ADM signaling with inhibitor ADM22-52 promoted a differentiative stimulation towards monocytic and granulocytic lineages. Moreover, based on the expression of CD31 relative to CD38, we hypothesized that an excess of ADM in bone marrow (BM) niche could increase the transendothelial migration of leukemia cells while any inhibitory event of ADM activity could raise cell retention in hyaluronate matrix by upregulating CD38. Taken into consideration the above evidence, we concluded that ADM and ADM22-52 could differently affect the growth of leukemia cells by autocrine/paracrine mechanisms and may have clinical relevance as biological targets for the intervention of tumor progression
    corecore