40 research outputs found

    Microwave losses of interferometers with many Josephson junctions versus DC magnetic field

    Get PDF

    Divergent Chemical Cues Elicit Seed Collecting by Ants in an Obligate Multi-Species Mutualism in Lowland Amazonia

    Get PDF
    In lowland Amazonian rainforests, specific ants collect seeds of several plant species and cultivate them in arboreal carton nests, forming species-specific symbioses called ant-gardens (AGs). In this obligate mutualism, ants depend on the plants for nest stability and the plants depend on ant nests for substrate and nutrients. AG ants and plants are abundant, dominant members of lowland Amazonian ecosystems, but the cues ants use to recognize the seeds are poorly understood. To address the chemical basis of the ant-seed interaction, we surveyed seed chemistry in nine AG species and eight non-AG congeners. We detected seven phenolic and terpenoid volatiles common to seeds of all or most of the AG species, but a blend of the shared compounds was not attractive to the AG ant Camponotus femoratus. We also analyzed seeds of three AG species (Anthurium gracile, Codonanthe uleana, and Peperomia macrostachya) using behavior-guided fractionation. At least one chromatographic fraction of each seed extract elicited retrieval behavior in C. femoratus, but the active fractions of the three plant species differed in polarity and chemical composition, indicating that shared compounds alone did not explain seed-carrying behavior. We suggest that the various AG seed species must elicit seed-carrying with different chemical cues

    Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae

    Full text link

    Adaptation of a widespread epiphytic fern to simulated climate change conditions

    No full text
    The response of species to climate change is generally studied using ex situ manipulation of microclimate or by modeling species range shifts under simulated climate scenarios. In contrast, a reciprocal transplant experiment was used to investigate the in situ adaptive response of the elevationally widespread epiphytic fern Asplenium antiquum to simulated climate change conditions. Fern spores were collected at three elevations and germinated in a greenhouse. The sporelings (juvenile ferns) were reciprocally transplanted to each collection site. Growth and mortality rates were monitored for 2 years. Wild sporelings were monitored at two sites to assess possible transplant effects. Habitat suitability, indicated by overall growth and survival patterns, declined as elevation increased. Only the highland population showed significant adaptation to the ‘‘home’’ habitat, achieving the highest survival rates. Microclimate data suggest that the presumed genetic adaptation at the highland site occurred mainly in response to drought stress in winter. Based on our previous study on species distribution models, which projected an expansion in the range of A. antiquum under future climate change scenarios, the populations at the upper margins of the species’ elevational range may play an important role during this expansion, given their better adaptation to the shifting marginal conditions. Our study suggests that infraspecific variation should be considered when determining the potential impact of climate change on biodiversity
    corecore