238 research outputs found
Recommended from our members
Correlated modal mineralogy, aqueous alteration and oxygen isotope composition of CM Chondrites
In this study we move beyond defining alteration sequences in CM chondrites towards understanding the relationship between modal mineralogy, the extent of aqueous alteration and O-isotope compositions
A geochemical study of the winonaites: Evidence for limited partial melting and constraints on the precursor composition
The winonaites are primitive achondrites which are associated with the IAB iron meteorites. Textural evidence implies heating to at least the Fe, NiâFeS cotectic, but previous geochemical studies are ambiguous about the extent of silicate melting in these samples. Oxygen isotope evidence indicates that the precursor material may be related to the carbonaceous chondrites. Here we analysed a suite of winonaites for modal mineralogy and bulk major- and trace-element chemistry in order to assess the extent of thermal processing as well as constrain the precursor composition of the winonaite-IAB parent asteroid.
Modal mineralogy and geochemical data are presented for eight winonaites. Textural analysis reveals that, for our sub-set of samples, all except the most primitive winonaite (Northwest Africa 1463) reached the Fe, NiâFeS cotectic. However, only one (Tierra Blanca) shows geochemical evidence for silicate melting processes. Tierra Blanca is interpreted as a residue of small-degree silicate melting. Our sample of Winona shows geochemical evidence for extensive terrestrial weathering. All other winonaites studied here (Fortuna, Queen Alexander Range 94535, Hammadah al Hamra 193, Pontlyfni and NWA 1463) have chondritic major-element ratios and flat CI-normalised bulk rare-earth element patterns, suggesting that most of the winonaites did not reach the silicate melting temperature. The majority of winonaites were therefore heated to a narrow temperature range of between âŒ1220 (the Fe, NiâFeS cotectic temperature) and âŒ1370 K (the basaltic partial melting temperature). Silicate inclusions in the IAB irons demonstrate partial melting did occur in some parts of the parent body (Ruzicka and Hutson, 2010), thereby implying heterogeneous heat distribution within this asteroid. Together, this indicates that melting was the result of internal heating by short-lived radionuclides. The brecciated nature of the winonaites suggests that the parent body was later disrupted by a catastrophic impact, which allowed the preservation of the largely unmelted winonaites.
Despite major-element similarities to both ordinary and enstatite chondrites, trace-element analysis suggests the winonaite parent body had a carbonaceous chondrite-like precursor composition. The parent body of the winonaites was volatile-depleted relative to CI, but enriched compared to the other carbonaceous classes. The closest match are the CM chondrites; however, the specific precursor is not sampled in current meteorite collections
40Ar/39Ar impact ages and time-temperature argon diffusion history of the Bunburra Rockhole anomalous basaltic achondrite
The Bunburra Rockhole meteorite is a brecciated anomalous basaltic achondrite containing coarse-, medium- and fine-grained lithologies. Petrographic observations constrain the limited shock pressure to between ca. 10 GPa and 20 GPa. In this study, we carried out nine 40Ar/39Ar step-heating experiments on distinct single-grain fragments extracted from the coarse and fine lithologies. We obtained six plateau ages and three mini-plateau ages. These ages fall into two internally concordant populations with mean ages of 3640 ± 21 Ma (n=7; P=0.53) and 3544 ± 26 Ma (n=2; P=0.54), respectively. Based on these results, additional 40Ar/39Ar data of fusion crust fragments, argon diffusion modeling, and petrographic observations, we conclude that the principal components of the Bunburra Rockhole basaltic achondrite are from a melt rock formed at ~3.64 Ga by a medium to large impact event. The data imply this impact generated high enough energy to completely melt the basaltic target rock and reset the Ar systematics, but only partially reset the Pb-Pb age. We also conclude that a complete 40Ar* resetting of pyroxene and plagioclase at this time could not have been achieved at solid-state conditions. Comparison with a terrestrial analogue (Lonar crater) shows that the time-temperature conditions required to melt basaltic target rocks upon impact are relatively easy to achieve. Ar data also suggest that a second medium-size impact event occurred on a neighboring part of the same target rock at ~3.54 Ga. Concordant low-temperature step ages of the nine aliquots suggest that, at ~3.42 Ga, a third smaller impact excavated parts of the ~3.64 Ga and ~3.54 Ga melt rocks and brought the fragments together. The lack of significant impact activity after 3.5 Ga, as recorded by the Bunburra Rockhole suggest that (1) either the meteorite was ejected in a small secondary parent body where it resided untouched by large impacts, or (2) it was covered by a porous heat-absorbing regolith blanket which, when combined with the diminishing frequency of large impacts in the solar system, protected Bunburra from subsequent major heating events. Finally we note that the total (K/Ar) resetting impact event history recorded by some of the brecciated eucrites (peak at 3.8-3.5 Ga) is similar to the large impact history recorded by the Bunburra Rockhole parent body (ca. 3.64-3.54 Ga; this study) and could indicate a similar position in the asteroid belt at that time
Recommended from our members
Mineralogic and O-isotope evolution in CM chondrites: on the non-relationship between bulk O-isotopes and degree of aqueous alteration
Contrary to predictions, no obvious correlation exists between the degree of aqueous alteration defined by PSD-XRD modal mineralogy and O-isotope compositions of CM chondrites. Heterogeneous hydrous reservoirs and/or consumption of water by oxidation may explain these data
Trace element carrier phases in primitive chondrite matrix: Implications for volatile element fractionation in the inner Solar System
Published versio
The WISDOM Radar: Unveiling the Subsurface Beneath the ExoMars Rover and Identifying the Best Locations for Drilling
The search for evidence of past or present life on Mars is the principal objective of the 2020 ESA-Roscosmos ExoMars Rover mission. If such evidence is to be found anywhere, it will most likely be in the subsurface, where organic molecules are shielded from the destructive effects of ionizing radiation and atmospheric oxidants. For this reason, the ExoMars Rover mission has been optimized to investigate the subsurface to identify, understand, and sample those locations where conditions for the preservation of evidence of past life are most likely to be found. The Water Ice Subsurface Deposit Observation on Mars (WISDOM) ground-penetrating radar has been designed to provide information about the nature of the shallow subsurface over depth ranging from 3 to 10âm (with a vertical resolution of up to 3âcm), depending on the dielectric properties of the regolith. This depth range is critical to understanding the geologic evolution stratigraphy and distribution and state of subsurface H2O, which provide important clues in the search for life and the identification of optimal drilling sites for investigation and sampling by the Rover's 2-m drill. WISDOM will help ensure the safety and success of drilling operations by identification of potential hazards that might interfere with retrieval of subsurface samples
Recommended from our members
Bunburra Rockhole: Exploring the geology of a new differentiated basaltic asteroid
Bunburra Rockhole (BR) is the first recovered meteorite of the Desert Fireball Network. It was initially classified as a basaltic eucrite, based on texture, mineralogy, and mineral chemistry but subsequent O isotopic analyses showed that BR's composition lies significantly far away from the HED group of meteorites. This suggested that BR was not a piece of the HED parent body (4 Vesta), but other explanations could also account for the observed oxygen signatures. Possible scenarios include contamination by components from other bodies (chondrites or other achondrites) or that 4 Vesta may not be as equilibrated as hypothesized. After examining multiple pieces with different instruments (CT scans and x-ray maps), no obvious evidence of contamination was found. If BR is not from Vesta, a conundrum exists as no unusual features were found in mineral and bulk trace element chemistry as exist for other anomalous basaltic achondrites such as Ibitira or Asuka 881394. These meteorites have distinct petrological and geochemical characteristics, in addition to their anomalous O isotope compositions, that set them apart from eucrites. Thus, early results provided a somewhat ambiguous picture of BR's petrogenesis and parentage. To clarify the nature of the relationship, if any, between BR and eucrites, we have performed a correlated stable isotope and bulk chemical study of several lithologic fragments
Impacts on the CV parent body: a coordinated, multiscale fabric analysis of the Allende meteorite
Evidence of impact-induced compaction in the carbonaceous chondrites, specifically CMs and CVs, has been widely investigated utilizing microscopy techniques and impact experiments. Here, we use high-resolution photography and large area and high-resolution electron backscattered diffraction (EBSD) mapping analyses in tandem, to explore the effects of impact-induced compaction at both the meso- and micro-scales in the Allende CV3.6 carbonaceous chondrite. Macro-scale photography images of a ~25âcm slab of Allende captured meso-scale features including calcium-aluminum inclusions (CAIs) and chondrules. CAIs have a long-axis shape-preferred orientation (SPO). Examination of such meso-scale features in thin section revealed the same trend. Matrix grains from this section display a large amount of heterogeneity in petrofabric orientation; microscale, high-resolution, large area EBSD mapping of ~300,000 olivine matrix grains; high-resolution large area EBSD map across an elongate CAI; and a series of high-resolution EBSD maps around two chondrules and around the CAI revealed crystallographic preferred orientations (CPOs) in different directions. Finally, internal grains of the CAI were found to demonstrate a weak lineation CPO, the first crystallographic detection of possible CAI âflow.â All results are consistent with multiple, gentle impacts on the Allende parent body causing hemispheric compaction. The larger, more resistant components are likely to have been compressed and oriented by earlier impacts, and the matrix region petrofabrics and CAI âflowâ likely occurred during subsequent impacts. Meteoritic components respond differently to impact events, and consequently, it is likely that different components would retain evidence of different impact events and angles
Murrili meteorite's fall and recovery from Kati Thanda
On the 27th of November 2015, at 10:43:45.526 UTC, a fireball was observed
across South Australia by ten Desert Fireball Network observatories lasting 6.1
s. A kg meteoroid entered the atmosphere with a speed of
13.68\pm0.09\,\mbox{km s}^{-1} and was observed ablating from a height of 85
km down to 18 km, having slowed to 3.28\pm0.21 \,\mbox{km s}^{-1}. Despite
the relatively steep 68.5 trajectory, strong atmospheric winds
significantly influenced the darkfight phase and the predicted fall line, but
the analysis put the fall site in the centre of Kati Thanda - Lake Eyre South.
Kati Thanda has metres-deep mud under its salt-encrusted surface.
Reconnaissance of the area where the meteorite landed from a low flying
aircraft revealed a 60 cm circular feature in the muddy lake, less than 50 m
from the predicted fall line. After a short search, which again employed light
aircraft, the meteorite was recovered on the 31st December 2015 from a depth of
42 cm. Murrili is the first recovered observed fall by the digital Desert
Fireball Network (DFN). In addition to its scientific value, connecting
composition to solar system context via orbital data, the recover demonstrates
and validates the capabilities of the DFN, with its next generation remote
observatories and automated data reduction pipeline
Melting and differentiation of early-formed asteroids: The perspective from high precision oxygen isotope studies
A number of distinct methodologies are available for determining the oxygen isotope composition of minerals and rocks, these include laser-assisted fluorination, secondary ion mass spectrometry (SIMS)and UV laser ablation. In this review we focus on laser-assisted fluorination, which currently achieves the highest levels of precision available for oxygen isotope analysis. In particular, we examine how results using this method have furthered our understanding of early-formed differentiated meteorites. Due to its rapid reaction times and low blank levels, laser-assisted fluorination has now largely superseded the conventional externally-heated Ni âbombâ technique for bulk analysis. Unlike UV laser ablation and SIMS analysis, laser-assisted fluorination is not capable of focused spot analysis. While laser fluorination is now a mature technology, further analytical improvements are possible via refinements to the construction of sample chambers, clean-up lines and the use of ultra-high resolution mass spectrometers.
High-precision oxygen isotope analysis has proved to be a particularly powerful technique for investigating the formation and evolution of early-formed differentiated asteroids and has provided unique insights into the interrelationships between various groups of achondrites. A clear example of this is seenin samples that lie close to the terrestrial fractionation line (TFL). Based on the data from conventional oxygen isotope analysis, it was suggested that the main-group pallasites, the howardite eucrite diogenite suite (HEDs) and mesosiderites could all be derived from a single common parent body. However,high precision analysis demonstrates that main-group pallasites have a Î17O composition that is fully resolvable from that of the HEDs and mesosiderites, indicating the involvement of at least two parent bodies. The range of Î17O values exhibited by an achondrite group provides a useful means of assessing the extent to which their parent body underwent melting and isotopic homogenization. Oxygen isotope analysis can also highlight relationships between ungrouped achondrites and the more well-populated groups. A clear example of this is the proposed link between the evolved GRA 06128/9 meteorites and the brachinites.
The evidence from oxygen isotopes, in conjunction with that from other techniques, indicates that we have samples from approximately 110 asteroidal parent bodies (âŒ60 irons, âŒ35 achondrites and stony-iron, and âŒ15 chondrites) in our global meteorite collection. However, compared to the likely size of the original protoplanetary asteroid population, this is an extremely low value. In addition, almost all of the differentiated samples (achondrites, stony-iron and irons) are derived from parent bodies that were highly disrupted early in their evolution.
High-precision oxygen isotope analysis of achondrites provides some important insights into the origin of mass-independent variation in the early Solar System. In particular, the evidence from various primitive achondrite groups indicates that both the slope 1 (Y&R) and CCAM lines are of primordial significance. Î17O differences between water ice and silicate-rich solids were probably the initial source of the slope 1 anomaly. These phases most likely acquired their isotopic composition as a result of UV photo-dissociation of CO that took place either in the early solar nebula or precursor giant molecular cloud. Such small-scale isotopic heterogeneities were propagated into larger-sized bodies, such as asteroids and planets, as a result of early Solar System processes, including dehydration, aqueous alteration,melting and collisional interactions
- âŠ