174 research outputs found

    Alzheimer's Disease-Related Dementias Summit 2019: National research priorities for the investigation of traumatic brain injury as a risk factor for Alzheimer's Disease and Related Dementias

    Get PDF
    TBI is a risk factor for later life dementia. Clinical and preclinical studies have elucidated multiple mechanisms through which TBI may influence or exacerbate multiple pathological processes underlying Alzheimer’s Disease and Alzheimer’s Disease Related Dementias (AD/ADRD). The National Institutes of Health hosts triennial ADRD Summits to inform a national research agenda, and the 2019 ADRD Summit was the first to highlight ‘TBI and AD/ADRD Risk’ as an emerging topic in the field. A multidisciplinary committee of TBI researchers with relevant expertise reviewed extant literature, identified research gaps and opportunities, and proposed draft research recommendations at the 2019 ADRD Summit. These research recommendations, further refined after broad stakeholder input at the Summit, cover four overall areas: (1) Encourage crosstalk and interdisciplinary collaboration between TBI and dementia researchers, (2) Establish infrastructure to study TBI as a risk factor for AD/ADRD, (3) Promote basic and clinical research examining the development and progression of TBI AD/ADRD neuropathologies and associated clinical symptoms, and (4) Characterize the clinical phenotype of progressive dementia associated with TBI and develop non-invasive diagnostic approaches. These recommendations recognize a need to strengthen communication and build frameworks to connect the complexity of TBI with rapidly evolving AD/ADRD research. Recommendations acknowledge TBI as a clinically and pathologically heterogeneous disease whose associations with AD/ADRDs remain incompletely understood. The recommendations highlight the scientific advantage of investigating AD/ADRD in the context of a known TBI exposure, the study of which can directly inform on disease mechanisms and treatment targets for AD/ADRDs with shared common pathways

    Reorganization of Verbal and Nonverbal Memory in Temporal Lobe Epilepsy Due to Unilateral Hippocampal Sclerosis

    Get PDF
    Purpose: Patients with temporal lobe epilepsy (TLE) due to hippocampal sclerosis (HS) often suffer from material-specific memory impairments. The purpose of this study was to use functional magnetic resonance imaging (fMRI) to study the organization of specific memory functions in these patients

    Carbamazepine reduces memory induced activation of mesial temporal lobe structures: a pharmacological fMRI-study

    Get PDF
    BACKGROUND AND PURPOSE: It is not known whether carbamazepine (CBZ; a drug widely used in neurology and psychiatry) influences the blood oxygenation level dependent (BOLD) contrast changes induced by neuronal activation and measured by functional MRI (fMRI). We aimed to investigate the influence of CBZ on memory induced activation of the mesial temporal lobes in patients with symptomatic temporal lobe epilepsy (TLE). MATERIAL AND METHODS: Twenty-one individual patients with refractory symptomatic TLE with different CBZ serum levels and 20 healthy controls were studied using BOLD fMRI. Mesial temporal lobe (MTL) activation was induced by a task that is based on the retrieval of individually familiar visuo-spatial knowledge. The extent of significant MTL fMRI activation was measured and correlated with the CBZ serum level. RESULTS: In TLE patients, the extent of significant fMRI activation over both MTL was negatively correlated to the CBZ serum level (Spearman r = -0.654, P < 0.001). Activation over the supposedly normal MTL, i.e. contralateral to the seizure onset of TLE patients, was smaller than the averaged MTL activation in healthy controls (P < 0.005). Age, duration of epilepsy, side of seizure onset, and intelligence were not correlated to the extent of the significant BOLD-response over both MTL in patients with TLE. CONCLUSIONS: In TLE patients, carbamazepine reduces the fMRI-detectable changes within the mesial temporal lobes as induced by effortful memory retrieval. FMRI appears to be suitable to study the effects of chronic drug treatment in patients with epilepsy

    Electrical Neuroimaging Reveals Timing of Attentional Control Activity in Human Brain

    Get PDF
    Voluntarily shifting attention to a location of the visual field improves the perception of events that occur there. Regions of frontal cortex are thought to provide the top-down control signal that initiates a shift of attention, but because of the temporal limitations of functional brain imaging, the timing and sequence of attentional-control operations remain unknown. We used a new analytical technique (beamformer spatial filtering) to reconstruct the anatomical sources of low-frequency brain waves in humans associated with attentional control across time. Following a signal to shift attention, control activity was seen in parietal cortex 100–200 ms before activity was seen in frontal cortex. Parietal cortex was then reactivated prior to anticipatory biasing of activity in occipital cortex. The magnitudes of early parietal activations were strongly predictive of the degree of attentional improvement in perceptual performance. These results show that parietal cortex, not frontal cortex, provides the initial signals to shift attention and indicate that top-down attentional control is not purely top down

    The Selectivity and Functional Connectivity of the Anterior Temporal Lobes

    Get PDF
    One influential account asserts that the anterior temporal lobe (ATL) is a domain-general hub for semantic memory. Other evidence indicates it is part of a domain-specific social cognition system. Arbitrating these accounts using functional magnetic resonance imaging has previously been difficult because of magnetic susceptibility artifacts in the region. The present study used parameters optimized for imaging the ATL, and had subjects encode facts about unfamiliar people, buildings, and hammers. Using both conjunction and region of interest analyses, person-selective responses were observed in both the left and right ATL. Neither building-selective, hammer-selective nor domain-general responses were observed in the ATLs, although they were observed in other brain regions. These findings were supported by “resting-state” functional connectivity analyses using independent datasets from the same subjects. Person-selective ATL clusters were functionally connected with the brain's wider social cognition network. Rather than serving as a domain-general semantic hub, the ATLs work in unison with the social cognition system to support learning facts about others

    BOLD Correlates of Trial-by-Trial Reaction Time Variability in Gray and White Matter: A Multi-Study fMRI Analysis

    Get PDF
    Reaction time (RT) is one of the most widely used measures of performance in experimental psychology, yet relatively few fMRI studies have included trial-by-trial differences in RT as a predictor variable in their analyses. Using a multi-study approach, we investigated whether there are brain regions that show a general relationship between trial-by-trial RT variability and activation across a range of cognitive tasks.The relation between trial-by-trial differences in RT and brain activation was modeled in five different fMRI datasets spanning a range of experimental tasks and stimulus modalities. Three main findings were identified. First, in a widely distributed set of gray and white matter regions, activation was delayed on trials with long RTs relative to short RTs, suggesting delayed initiation of underlying physiological processes. Second, in lateral and medial frontal regions, activation showed a "time-on-task" effect, increasing linearly as a function of RT. Finally, RT variability reliably modulated the BOLD signal not only in gray matter but also in diffuse regions of white matter.The results highlight the importance of modeling trial-by-trial RT in fMRI analyses and raise the possibility that RT variability may provide a powerful probe for investigating the previously elusive white matter BOLD signal

    Self-Regulation of Amygdala Activation Using Real-Time fMRI Neurofeedback

    Get PDF
    Real-time functional magnetic resonance imaging (rtfMRI) with neurofeedback allows investigation of human brain neuroplastic changes that arise as subjects learn to modulate neurophysiological function using real-time feedback regarding their own hemodynamic responses to stimuli. We investigated the feasibility of training healthy humans to self-regulate the hemodynamic activity of the amygdala, which plays major roles in emotional processing. Participants in the experimental group were provided with ongoing information about the blood oxygen level dependent (BOLD) activity in the left amygdala (LA) and were instructed to raise the BOLD rtfMRI signal by contemplating positive autobiographical memories. A control group was assigned the same task but was instead provided with sham feedback from the left horizontal segment of the intraparietal sulcus (HIPS) region. In the LA, we found a significant BOLD signal increase due to rtfMRI neurofeedback training in the experimental group versus the control group. This effect persisted during the Transfer run without neurofeedback. For the individual subjects in the experimental group the training effect on the LA BOLD activity correlated inversely with scores on the Difficulty Identifying Feelings subscale of the Toronto Alexithymia Scale. The whole brain data analysis revealed significant differences for Happy Memories versus Rest condition between the experimental and control groups. Functional connectivity analysis of the amygdala network revealed significant widespread correlations in a fronto-temporo-limbic network. Additionally, we identified six regions — right medial frontal polar cortex, bilateral dorsomedial prefrontal cortex, left anterior cingulate cortex, and bilateral superior frontal gyrus — where the functional connectivity with the LA increased significantly across the rtfMRI neurofeedback runs and the Transfer run. The findings demonstrate that healthy subjects can learn to regulate their amygdala activation using rtfMRI neurofeedback, suggesting possible applications of rtfMRI neurofeedback training in the treatment of patients with neuropsychiatric disorders

    The National Institute of Neurological Disorders and Stroke and Department of Defense Sport-Related Concussion Common Data Elements Version 1.0 Recommendations

    Get PDF
    Aim: Through a partnership with the National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), and Department of Defense (DoD), the development of Sport-Related Concussion (SRC) Common Data Elements (CDEs) was initiated. The aim of this collaboration was to increase the efficiency and effectiveness of clinical research studies and clinical treatment outcomes, increase data quality, facilitate data sharing across studies, reduce study start-up time, more effectively aggregate information into metadata results, and educate new clinical investigators. Materials/Methods: The SRC CDE Working Group consisted of 34 worldwide experts in concussion from varied fields of related expertise, divided into three Subgroups: Acute (3 months post-concussion). To develop CDEs, the Subgroups reviewed various domains, and then selected from, refined, and added to existing CDEs, case report forms and field-tested data elements from national registries and funded research studies. Recommendations were posted to the NINDS CDE Website for Public Review from February 2017 to April 2017. Results: Following an internal Working Group review of recommendations, along with consideration of comments received from the Public Review period, the first iteration (Version 1.0) of the NINDS SRC CDEs was completed in June 2017. The recommendations include Core and Supplemental ? Highly Recommended CDEs for cognitive data elements and symptom checklists, as well as other outcomes and endpoints (e.g., vestibular, oculomotor, balance, anxiety, depression) and sample case report forms (e.g., injury reporting, demographics, concussion history) for domains typically included in clinical research studies. Interpretation: The NINDS SRC CDEs and supporting documents are publicly available on the NINDS CDE website https://www.commondataelements.ninds.nih.gov/. Widespread use of CDEs by researchers and clinicians will facilitate consistent SRC clinical research and trial design, data sharing, and metadata retrospective analysis
    corecore