107 research outputs found

    Scanned Potential Microscopy of Edge and Bulk Currents in the Quantum Hall Regime

    Full text link
    Using an atomic force microscope as a local voltmeter, we measure the Hall voltage profile in a 2D electron gas in the quantum Hall (QH) regime. We observe a linear profile in the bulk of the sample in the transition regions between QH plateaus and a distinctly nonlinear profile on the plateaus. In addition, localized voltage drops are observed at the sample edges in the transition regions. We interpret these results in terms of theories of edge and bulk currents in the QH regime.Comment: 4 pages, 5 figure

    Nanostructured Al-ZnO/CdSe/Cu2O ETA solar cells on Al-ZnO film/quartz glass templates

    Get PDF
    The quartz/Al-ZnO film/nanostructured Al-ZnO/CdSe/Cu2O extremely thin absorber solar cell has been successfully realized. The Al-doped ZnO one-dimensional nanostructures on quartz templates covered by a sputtering Al-doped ZnO film was used as the n-type electrode. A 19- to 35-nm-thin layer of CdSe absorber was deposited by radio frequency magnetron sputtering, coating the ZnO nanostructures. The voids between the Al-ZnO/CdSe nanostructures were filled with p-type Cu2O, and therefore, the entire assembly formed a p-i-n junction. The cell shows the energy conversion efficiency as high as 3.16%, which is an interesting option for developing new solar cell devices

    Activin-A limits Th17 pathogenicity and autoimmune neuroinflammation via CD39 and CD73 ectonucleotidases and Hif1-α–dependent pathways

    Get PDF
    In multiple sclerosis (MS), Th17 cells are critical drivers of autoimmune central nervous system (CNS) inflammation and demyelination. Th17 cells exhibit functional heterogeneity fostering both pathogenic and nonpathogenic, tissue-protective functions. Still, the factors that control Th17 pathogenicity remain incompletely defined. Here, using experimental autoimmune encephalomyelitis, an established mouse MS model, we report that therapeutic administration of activin-A ameliorates disease severity and alleviates CNS immunopathology and demyelination, associated with decreased activation of Th17 cells. In fact, activin-A signaling through activin-like kinase-4 receptor represses pathogenic transcriptional programs in Th17-polarized cells, while it enhances antiinflammatory gene modules. Whole-genome profiling and in vivo functional studies revealed that activation of the ATP-depleting CD39 and CD73 ectonucleotidases is essential for activin-A–induced suppression of the pathogenic signature and the encephalitogenic functions of Th17 cells. Mechanistically, the aryl hydrocarbon receptor, along with STAT3 and c-Maf, are recruited to promoter elements on Entpd1 and Nt5e (encoding CD39 and CD73, respectively) and other antiinflammatory genes, and control their expression in Th17 cells in response to activin-A. Notably, we show that activin-A negatively regulates the metabolic sensor, hypoxia-inducible factor-1α, and key inflammatory proteins linked to pathogenic Th17 cell states. Of translational relevance, we demonstrate that activin-A is induced in the CNS of individuals with MS and restrains human Th17 cell responses. These findings uncover activin-A as a critical controller of Th17 cell pathogenicity that can be targeted for the suppression of autoimmune CNS inflammation

    Consequence of aging at Au/HTM/perovskite interface in triple cation 3D and 2D/3D hybrid perovskite solar cells

    Get PDF
    Perovskite solar cells (PSCs) expressed great potentials for offering a feasible alternative to conventional photovoltaic technologies. 2D/3D hybrid PSCs, where a 2D capping layer is used over the 3D film to avoid the instability issues associated with perovskite film, have been reported with improved stabilities and high power conversion efficiencies (PCE). However, the profound analysis of the PSCs with prolonged operational lifetime still needs to be described further. Heading towards efficient and long-life PSCs, in-depth insight into the complicated degradation processes and charge dynamics occurring at PSCs' interfaces is vital. In particular, the Au/HTM/perovskite interface got a substantial consideration due to the quest for better charge transfer; and this interface is debatably the trickiest to explain and analyze. In this study, multiple characterization techniques were put together to understand thoroughly the processes that occur at the Au/HTM/perovskite interface. Inquest analysis using current–voltage (I–V), electric field induced second harmonic generation (EFISHG), and impedance spectroscopy (IS) was performed. These techniques showed that the degradation at the Au/HTM/perovskite interface significantly contribute to the increase of charge accumulation and change in impedance value of the PSCs, hence resulting in efficiency fading. The 3D and 2D/3D hybrid cells, with PCEs of 18.87% and 20.21%, respectively, were used in this study, and the analysis was performed over the aging time of 5000 h. Our findings propose that the Au/HTM/perovskite interface engineering is exclusively essential for attaining a reliable performance of the PSCs and provides a new perspective towards the stability enhancement for the perovskite-based future emerging photovoltaic technology.Scopu

    The importance of parameter choice in modelling dynamics of the eye lens

    Get PDF
    The lens provides refractive power to the eye and is capable of altering ocular focus in response to visual demand. This capacity diminishes with age. Current biomedical technologies, which seek to design an implant lens capable of replicating the function of the biological lens, are unable as yet to provide such an implant with the requisite optical quality or ability to change the focussing power of the eye. This is because the mechanism of altering focus, termed accommodation, is not fully understood and seemingly conflicting theories require experimental support which is difficult to obtain from the living eye. This investigation presents finite element models of the eye lens based on data from human lenses aged 16 and 35 years that consider the influence of various modelling parameters, including material properties, a wide range of angles of force application and capsular thickness. Results from axisymmetric models show that the anterior and posterior zonules may have a greater impact on shape change than the equatorial zonule and that choice of capsular thickness values can influence the results from modelled simulations

    Molecular Biomarkers of Vascular Dysfunction in Obstructive Sleep Apnea

    Get PDF
    Untreated and long-lasting obstructive sleep apnea (OSA) may lead to important vascular abnormalities, including endothelial cell (EC) dysfunction, hypertension, and atherosclerosis. We observed a correlation between microcirculatory reactivity and endothelium-dependent release of nitric oxide in OSA patients. Therefore, we hypothesized that OSA affects (micro)vasculature and we aimed to identify vascular gene targets of OSA that could possibly serve as reliable biomarkers of severity of the disease and possibly of vascular risk. Using quantitative RT-PCR, we evaluated gene expression in skin biopsies of OSA patients, mouse aortas from animals exposed to 4-week intermittent hypoxia (IH; rapid oscillations in oxygen desaturation and reoxygenation), and human dermal microvascular (HMVEC) and coronary artery endothelial cells (HCAEC) cultured under IH. We demonstrate a significant upregulation of endothelial nitric oxide synthase (eNOS), tumor necrosis factor-alpha-induced protein 3 (TNFAIP3; A20), hypoxia-inducible factor 1 alpha (HIF-1α?? and vascular endothelial growth factor (VEGF) expression in skin biopsies obtained from OSA patients with severe nocturnal hypoxemia (nadir saturated oxygen levels [SaO2]<75%) compared to mildly hypoxemic OSA patients (SaO2 75%–90%) and a significant upregulation of vascular cell adhesion molecule 1 (VCAM-1) expression compared to control subjects. Gene expression profile in aortas of mice exposed to IH demonstrated a significant upregulation of eNOS and VEGF. In an in vitro model of OSA, IH increased expression of A20 and decreased eNOS and HIF-1α expression in HMVEC, while increased A20, VCAM-1 and HIF-1αexpression in HCAEC, indicating that EC in culture originating from distinct vascular beds respond differently to IH stress. We conclude that gene expression profiles in skin of OSA patients may correlate with disease severity and, if validated by further studies, could possibly predict vascular risk in OSA patients

    The role of organisms in hyporheic processes : gaps in current knowledge, needs for future research and applications

    Get PDF
    Fifty years after the hyporheic zone was first defined (Orghidan, 1959), there are still gaps in the knowledge regarding the role of biodiversity in hyporheic processes. First, some methodological questions remained unanswered regarding the interactions between biodiversity and physical processes, both for the study of habitat characteristics and interactions at different scales. Furthermore, many questions remain to be addressed to help inform our understanding of invertebrate community dynamics, especially regarding the trophic niches of organisms, the functional groups present within sediment, and their temporal changes. Understanding microbial community dynamics would require investigations about their relationship with the physical characteristics of the sediment, their diversity, their relationship with metabolic pathways, their inter- actions with invertebrates, and their response to environmental stress. Another fundamental research question is that of the importance of the hyporheic zone in the global metabolism of the river, which must be explored in relation to organic matter recycling, the effects of disturbances, and the degradation of contaminants. Finally, the application of this knowledge requires the development of methods for the estimation of hydro- logical exchanges, especially for the management of sediment clogging, the optimization of self-purification, and the integration of climate change in environmental policies. The development of descriptors of hyporheic zone health and of new metrology is also crucial to include specific targets in water policies for the long-term management of the system and a clear evaluation of restoration strategies

    Amyloid Plaques Beyond Aβ: A Survey of the Diverse Modulators of Amyloid Aggregation

    Get PDF
    Aggregation of the amyloid-β (Aβ) peptide is strongly correlated with Alzheimer’s disease (AD). Recent research has improved our understanding of the kinetics of amyloid fibril assembly and revealed new details regarding different stages in plaque formation. Presently, interest is turning toward studying this process in a holistic context, focusing on cellular components which interact with the Aβ peptide at various junctures during aggregation, from monomer to cross-β amyloid fibrils. However, even in isolation, a multitude of factors including protein purity, pH, salt content, and agitation affect Aβ fibril formation and deposition, often producing complicated and conflicting results. The failure of numerous inhibitors in clinical trials for AD suggests that a detailed examination of the complex interactions that occur during plaque formation, including binding of carbohydrates, lipids, nucleic acids, and metal ions, is important for understanding the diversity of manifestations of the disease. Unraveling how a variety of key macromolecular modulators interact with the Aβ peptide and change its aggregation properties may provide opportunities for developing therapies. Since no protein acts in isolation, the interplay of these diverse molecules may differentiate disease onset, progression, and severity, and thus are worth careful consideration
    corecore