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Abstract Aggregation of the amyloid-3 (A3) peptide is
strongly correlated with Alzheimer’s disease (AD). Recent
research has improved our understanding of the kinetics of
amyloid fibril assembly and revealed new details regarding
different stages in plaque formation. Presently, interest is turn-
ing toward studying this process in a holistic context, focusing
on cellular components which interact with the A3 peptide at
various junctures during aggregation, from monomer to
cross-f3 amyloid fibrils. However, even in isolation, a multi-
tude of factors including protein purity, pH, salt content, and
agitation affect A3 fibril formation and deposition, often pro-
ducing complicated and conflicting results. The failure of nu-
merous inhibitors in clinical trials for AD suggests that a de-
tailed examination of the complex interactions that occur dur-
ing plaque formation, including binding of carbohydrates,
lipids, nucleic acids, and metal ions, is important for under-
standing the diversity of manifestations of the disease.
Unraveling how a variety of key macromolecular modulators
interact with the A3 peptide and change its aggregation prop-
erties may provide opportunities for developing therapies.
Since no protein acts in isolation, the interplay of these diverse
molecules may differentiate disease onset, progression, and
severity, and thus are worth careful consideration.
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Introduction: what’s in a plaque?

Amyloid plaques, first identified over 100 years ago
(Alzheimer 1911), have become an indicative sign of protein
misfolding diseases, of which 50 are now identified (Sipe et al.
2016). As the population of the developed world ages, amy-
loid pathologies are becoming an increasingly grave problem.
In 2016, a reported 5.4 million Americans were living with
Alzheimer’s disease (AD), perhaps the most well-known am-
yloid disease, with this number predicted to rise to 13.8 mil-
lion by 2050 (Assoc. 2016). Thus, understanding the molec-
ular basis of amyloid diseases is of critical importance and has
recently been named one of the grand challenges of protein
folding, misfolding, and degradation (Goloubinoff 2014).
Alzheimer’s disease is postulated to be caused by the forma-
tion of senile plaques from the Af3 protein, a soluble, unstruc-
tured peptide cleaved from the membrane-embedded amyloid
precursor protein (APP) by 3 and <y secretase enzymes to a
length of 3843 amino acid residues (Knowles et al. 2014).
The most well-studied forms of A3 are the abundant 40-
residue form and the highly aggregation-prone 42-residue form.
The ratio of AB42/40 in the cerebral spinal fluid (CSF) is used
as a clinical biomarker to differentiate diagnosis of AD from
other forms of dementia (Wiltfang et al. 2007). The A3 peptide
is comprised of a charged N-terminal region (residues 1-22)
and hydrophobic C-terminal segment (residues 23—40/42;
Fig. 1). The highly hydrophobic central region, residues 16—
21 (KLVFFA), is the most aggregation-prone portion of the
sequence, and is alone sufficient to cause formation of insoluble
fibrils (Gorevic et al. 1987; Preston et al. 2012). Aggregation of
both APB40 and A342 occur in a nucleation-dependent manner
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Fig. 1 The AP42 peptide and its interaction with various plaque
components. The sequence of the A3 peptide, with charged residues
(positive black triangle, negative white triangle). Proposed binding sites

(Meisl et al. 2014), in which several copies of the unstructured
peptide contact one another, presumably through hydrophobic
(Kim and Hecht 2006) and/or electrostatic (Buell et al. 2013)
interactions, forming oligomers and eventually an oligomeric
nucleus, which is highly dependent on protein concentration
and cellular conditions. Oligomers of AP42 in particular
(which may be transient or long-lived) have been implicated
as cytotoxic disease-causative agents in AD (Haass and Selkoe
2007). Following nucleus formation, aggregation proceeds rap-
idly through higher-order oligomers to insoluble fibrils, which
contain a characteristic cross-f3 structure (Bonar et al. 1969;
Geddes et al. 1968). These fibrils then associate, creating dense
mats called plaques, which are highly stable thermodynamic
sinks comprised of A340, AP342, and other cellular compo-
nents. Amyloid deposits in the AD brain include intracellular
neurofibrillary tangles, principally of the protein tau, and extra-
cellular plaques comprised of the A3 peptide (Selkoe 2002).
Both in vitro (Paravastu et al. 2008) and in vivo (Lu et al. 2013)
characterization of A3 amyloid fibrils have revealed that they
are heterogeneous in nature (Eichner and Radford 2011; Tycko
2015), with different fibril morphologies potentially responsible
for differences in disease progression between individuals.
Plaques are also stockpiles of a wide variety of macromolecular
components (Fig. 2), which interact with amyloid fibrils in a
variety of ways—both known and unknown—throughout the
aggregation cascade (Alexandrescu 2005), and these non-
proteinaceous components of amyloid may have important
physiological ramifications.

AD can result from mutations in the A3 peptide, APP, or
related enzymes. This manifestation, termed familial
Alzheimer’s disease, is rare, and accounts for <3% of cases.
More commonly, AD can arise sporadically late in life, which
accounts for ~97% of cases (Masters et al. 2015). Both modes
of onset result in a similar disease phenotype: progressive
impairment of cognition (Mayeux et al. 2011). While plaque
burden is not directly correlated with disease severity (Selkoe
and Hardy 2016), the A3 peptide is regarded as a causative
agent in AD (Hardy and Higgins 1992). Particularly in spo-
radic AD, where the initiation factors of the disease are largely
unknown, cellular components are strongly suspect as poten-
tial contributors to Af3-mediated aggregation. Recently, a
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number of drugs targeting the amyloid cascade have been
suggested (Aisen et al. 2006; Bergamaschini et al. 2004),
drawn from a variety of engineered and natural binding part-
ners (Fig. 3). However, one of the difficulties facing AD ther-
apeutics includes the fact that A3 may interact with a wide
variety of macromolecules which can alter its aggregation
properties or toxicity in vivo and may vary between
individuals.

This review provides a brief overview of the major types of
non-proteinaceous macromolecules which co-localize with Af3
fibrils in amyloid plaques, and details their binding, aggregation,
and cross-reactivity to explore how and why these components
are found in in senile plaques. Since a major focus of current AD
research involves targeting the aggregation pathway, we also
discuss therapeutics inspired by these molecules and their effects
on A} aggregation. It is worth noting that many proteins also
co-localize in amyloid plaques, and these have been quantified
by proteomic analysis (Liao et al. 2004; Perreau et al. 2010), but
will not be discussed in detail here, aside from the proteins ApoE
and serum amyloid P, which are associated with lipid and car-
bohydrate aggregation factors, respectively (Fig. 2). By focusing
on plaques, we assess the variable and complex forces exerted
on aggregation of the A3 peptide in a cellular context, toward
therapeutic intervention in AD and other amyloid diseases, and
provide some recommendations for future directions.

Part 1: Carbohydrates
Proteoglycans and glycosaminoglycans

The term ‘amyloid’, first employed by Rudolf Virchow
(Virchow and Chance 1860), means ‘starch-like’, based on
an analysis of the first plaques for molecules that were antic-
ipated to be the principal components: starch and cellulose
(Sipe and Cohen 2000). It was determined later that the car-
bohydrate material in plaques consisted of sulfated proteogly-
cans (Bitter and Muir 1966), an integral part of basement
membranes (BM), extracellular surfaces which separate cells
and tissue throughout the body. Proteoglycans in the BM form
a dense mesh-like network which provides structural support
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Fig. 2 Af amyloid plaque
contents. Major categories of carbohydrates m

amyloid plaque components are Zn2*
listed, with particular species proteoglycans gangliosides (rafts) Cu2*

shown below. Proteinaceous
species discussed in this review
are listed, but others are also
found within A3 plaques, see
(Liao et al. 2004). The TEM
image is comprised of aggregated
A 42 fibrils collected on a JEOL
JEM-1400 microscope, with the
scale bar indicated on the image

glycosaminoglycans cholesterol

AB42/AB40

Apo Et:

and cellular communication (Varki and Sharon 2009).
Experiments utilizing gold-conjugated lectins and fluores-
cence microscopy have identified that saccharides are found
in the periphery of human brain tissue AD plaques (Roher
et al. 1993; Szumanska et al. 1987). In particular, the

Fig. 3 Proposed molecules A

targeting AP aggregation: a H;COCO

heparin-based N-acetyl-
glucosamine monosaccharide
(Kisilevsky et al. 2003); b
Enoxaparin, a low-molecular-
weight heparin (Bergamaschini
et al. 2004); ¢ RNA aptamer (355
(Ylera et al. 2002), with bases
colored as shown; d RNA
aptamer E2 (Rahimi et al. 2009); e
the statin Atorvastatin (Lipitor); f
doxcosahexaenoic acid (DHA); g
clioquinol; h PBT2; i tripeptide
H-W-H (Caballero et al. 2016)

OH

serum amyloid P

H,COCO

proteoglycan perlecan, which contains 1-3 linear heparan sul-
fate (HS) glycosaminoglycan (GAG) chains linked to the core
protein (Esko et al. 2009), has been shown to bind directly to
fibrillar AB40 and A342. Other proteoglycans have also been
detected in AD amyloid plaques, including the extracellular
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matrix proteoglycans collagen XVIII and agrin, and the cell
surface proteoglycans syndecan 1-3 and glypican 1 (van
Horssen et al. 2003). A detailed analysis of the perlecan-
binding interface indicated that the GAG HS chains, particu-
larly the negatively charged sulfate moieties, were critical to
the interaction (Kisilevsky and Snow 1988; Snow et al. 1987).
Several other GAGs which contain sulfate groups have also
been detected in AD plaques, including dermatan sulfate
(Snow et al. 1992) and chondroitin sulfate (Dewitt et al.
1993; Oohira et al. 2000). Much of the work on the interaction
between GAGs and amyloid proteins has subsequently been
performed with heparin, a highly sulfated analog of HS which
can be produced synthetically (Diaz-Nido et al. 2002;
Meneghetti et al. 2015). Heparin binds to A{340 similarly to
HS and was shown by Castillo and co-workers to contain a
high degree of the core sulfate-binding motif present in HS
(Castillo et al. 1999).

A wide variety of amyloid proteins bind GAGs, including
tau (Goedert et al. 1996), A340/42 (McLaurin et al. 1999a, b),
amylin (islet amyloid polypeptide, IAPP) (Jha et al. 2011;
Meng and Raleigh 2011), (3;,-microglobulin (Borysik et al.
2007; So et al. 2017), transthyretin (Bourgault et al. 2011),
serum amyloid A (SAA) (Ancsin and Kisilevsky 1999), o-
synuclein (Madine et al. 2009), and prion (Vieira et al. 2014;
Warner et al. 2002). Due to this apparent binding ubiquity, it has
been suggested that the interaction between heparin and amy-
loid is electrostatically-driven, which is supported by the fact
that removal of all sulfate groups from heparin impairs its bind-
ing to AP40 (Castillo et al. 1999). An investigation of interac-
tion sites on all known heparin-binding proteins (Cardin and
Weintraub 1989; Sobel et al. 1992) yielded several generalized
heparin-binding motifs: XBBXBX, XBBBXXBX, and
XBBBXXBBBXXBBX, where B is a basic residue and X is
any other residue. The fragments of sequence-separating basic
residues suggest a possible role for protein structure in heparin
binding, allowing multiple basic residues to be brought into
proximity by protein folding. In support of this hypothesis,
heparin has been shown to bind with differing affinity to a
variety of AR40 fibril morphologies comprised of an identical
sequence (Madine et al. 2012; Stewart et al. 2016), indicating
that GAG binding, despite its apparent ubiquity, can also ex-
hibit specificity. Additionally, individual residues on a given
amyloid chain have been shown to alter heparin binding in
SAA (Ancsin and Kisilevsky 1999) and A31-28 (McLaurin
and Fraser 2000), indicating that binding is not generic across
different basic residues. An investigation of the role of sulfate
groups on binding to a specific morphology of A{340 fibrils
indicates that the geometry of the GAG molecule is also impor-
tant for binding to amyloid fibrils (Lindahl et al. 1999) (Stewart
et al., unpublished). Thus, the heparin—amyloid interaction is
governed both by general electrostatic complementarity and
more specific topological requirements for both the protein
and GAG chain.
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Considering the A3 peptide specifically, GAGs have been
shown to reduce cellular toxicity in Af25-35 and A{342
(Bravo et al. 2008; Woods et al. 1995), to stabilize fibrils
against degradation in AP42 (Valle-Delgado et al. 2010),
and to accelerate fibril formation in A340 and A42
(Castillo et al. 1999). GAGs have also been proposed to per-
form a templating role in amyloid aggregation, providing a
scaffold for subunits to self-associate (Motamedi-Shad et al.
2009a; Solomon et al. 2011), and to attenuate cellular toxicity
by favoring a benign, alternate aggregation pathway (Bravo
et al. 2008; Motamedi-Shad et al. 2009b). GAG molecules are
also intimately tied to AD plaque formation and amyloid bur-
den. Recent work by Liu and co-workers removed a critical
component of HS biosynthesis, the gene Ext/, creating a line
of HS-deficient mice (Liu et al. 2016). In these animals, solu-
ble A3 clearance was increased and amyloid plaque deposi-
tion was reduced (Liu et al. 2016). Ext/ inactivation also re-
duced neuroinflammation as measured by a reduction in
TNF-o and IL-6 inflammatory cytokines, in keeping with
heparin’s traditional medicinal use as an anticoagulant
(Bjork and Lindahl 1982). A related study overexpressing
heparinase, the enzyme which degrades heparin and heparan
sulfate, also reduced plaque burden (Jendresen et al. 2015).
These studies indicate that GAGs are important for A3 depo-
sition in amyloid plaques. However, whether this outcome
exacerbates or retards disease progression remains unclear.

Serum amyloid P: a lectin-binding protein

In addition to proteoglycans, A3 amyloid plaques also contain
carbohydrate-binding proteins whose levels are altered in AD.
One of the most well-characterized of these components, found
almost universally in amyloid plaques, is the Ca®*-dependent
protein of the innate immune system, serum amyloid P (SAP)
(Pepys et al. 1994). This five subunit pentraxin interacts with
GAGs during its normal cellular function and is able to neutralize
their anticoagulant activity (Williams et al. 1992). Additionally,
SAP binds to a variety of amyloid proteins, including A3 fibrils
isolated from AD plaques, and stabilizes them from degradation
(Tennent et al. 1995). Based on refolding studies using lactate
dehydrogenase, SAP has been suggested to perform a
chaperone-like role in reducing aggregation generally (Coker
et al. 2000). Recent findings point to Ca®*-dependent binding
of the SAP pentamer to AR40 in both monomeric and fibril
forms (Ozawa et al. 2016), although the precise molecular details
of these interactions are not known. Since SAP has the ability to
bind both GAGs and amyloid fibrils, it is likely an important
modulator of protein aggregation and plaque formation.

Short glycosaminoglycans as amyloid therapeutics

As noted above, heparin has historically been administered as
an anticoagulant (Bjork and Lindahl 1982), a property which
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is increasingly recognized as important for AD (Akiyama
et al. 2000; Heppner et al. 2015). As GAGs are small, natural
biomolecules, they are able to cross the blood—brain barrier,
alter A} aggregation, and mitigate cytotoxicity
(Bergamaschini et al. 2009). Kisilevsky and co-workers have
screened an array of different short GAGs comprised of one to
three disaccharide units with the hope of outcompeting full-
length GAGs and other negatively charged molecules for
amyloidogenic monomeric peptides (Fraser et al. 2001;
Kisilevsky and Szarek 2002; Kisilevsky et al. 2003). These
authors have identified several GAG mimetics which inhibit
SAA amyloid aggregation in a transgenic mouse model
(Kisilevsky et al. 2003); one such molecule, a derivative of
N-acetyl-glucosamine, is shown in Fig. 3a, and could logically
be utilized additionally in targeting A3 aggregation.
Relatedly, Enoxaparin, a low-molecular;weight heparin, act-
ing by a similar mechanism to the short GAGs, was shown to
reduce plaque accumulation in an AD mouse model, while
also reducing cytotoxicity and inflammation (Bergamaschini
et al. 2004) (Fig. 3b). In a randomized pilot study, Enoxaparin
was shown to increase the concentration of A342 in cerebro-
spinal fluid. A recent study, however, has called into question
the benefit of increased soluble A3 in the treatment of AD
(Cuietal. 2017), and future work will be needed to resolve the
role of GAGs in altering AD symptoms.

Part 2: Nucleic acids

DNA was initially recognized as a molecule which affects protein
aggregation by its ability to promote prion unfolding and conver-
sion into an infective form (Nandi et al. 2002). More recently,
nucleic acids have been shown to promote tau aggregation
through template-assisted growth (Dinkel et al. 2015) and to bind
aggregated A340 (Camero et al. 2013). Nucleic acids also co-
localize in amyloid plaques (Ginsberg et al. 1997), and, in par-
ticular, neuronal mRNA transcripts have been detected at high
levels in these structures (Ginsberg et al. 1999). The binding
affinity of RNA molecules to A{340 is in the low micromolar
range (Rahimi et al. 2009), similar to the affinity for GAGs
(Stewart et al. 2016), suggesting that the two molecules may
compete for A3 binding in vivo.

Recently, a systematic study of polyphosphate, the molec-
ular precursor of the nucleic acid backbone, was shown to act
as a universal accelerator of amyloid aggregation (Cremers
etal. 2016). Using both intracellular and extracellular amyloid
proteins, including Af342, in both in vitro and in vivo con-
texts, polyphosphate was shown to be able to accelerate amy-
loid fibril formation and alter toxicity, stability, and fibril mor-
phology. This work and previous studies (Calamai et al. 2006)
postulate that the repeating negatively charged segments of
which nucleic acids are comprised act as a [3-sheet-
stabilizing scaffold for fibril formation, similarly to the role

suggested for glycosaminoglycans. The nucleic acid/
polyphosphate binding interface for the A3 peptide, therefore,
is most likely located in the same region as the putative GAG
binding site, involving positively charged N-terminal residues
(Fig. 1). However, whether nucleic acids are able to bind am-
yloid fibrils universally, or whether binding is more specific to
the amyloid and/or nucleic acid structure, as shown for GAGs,
remains unanswered.

Nucleic acids may play a larger role in aggregation than
simply stabilizing A fibrils in plaques, and have also been
observed to affect the structural state of many cellular proteins
under stress conditions. Audas and colleagues recently dem-
onstrated that A3 fibril formation can be a reversed in vivo,
via recruitment of long noncoding RNAs (ncRNA), which
fine-tune protein expression (Audas and Lee 2016). The au-
thors identified over 180 different types of proteins, including
A, which localize in novel cellular compartments they label
as ‘A-bodies’ in response to stress (Audas et al. 2016). These
proteins contained a similar arginine-histidine sequence
targeted by the ncRNAs, which is also found in the N-
terminal region of the AP peptide (Fig. 1). These surprising
findings suggest that ncRNA signals may be lost or compro-
mised in aging, resulting in a prolonged duration of the aggre-
gated stage. Thus, DNA and RNA appear to alter A3 aggre-
gation processes, as well as being found in plaques.
Understanding this interaction more completely, both inde-
pendently and in combination with possible competing factors
such as GAGs, will be key to utilizing both sets of molecules
to modulate AD.

RNA aptamers as amyloid therapeutics

RNA aptamers are short (<100 bp) segments of selection-
enriched nucleic acid sequences which are able to bind tightly
and specifically to amyloid proteins (Ellington and Szostak
1990; Robertson and Joyce 1990; Tuerk and Gold 1990),
and thus can be used to target particular fibril epitopes or
stages of disease progression. RNA aptamers are small rela-
tive to antibodies and lack the cross-reactivity that antibodies
possess (Jayasena 1999). To date, RNA aptamers have been
developed which limit prion infectivity (Proske et al. 2002;
Rhie et al. 2003), change aggregation co-assembly mecha-
nisms (Sarell et al. 2014), and target specific amyloidogenic
proteins (Bunka et al. 2007). Aptamers have also been utilized
to select for AB-binding partners which disrupt amyloid ag-
gregation. For example, Ylera and colleagues developed RNA
aptamers which bind AP40 fibrils with nanomolar affinity,
which could potentially be utilized as therapeutic or diagnostic
tools (Ylera et al. 2002) (Fig. 3c). Relatedly, RNA aptamers
developed against AR40 fibrils were able to recognize these
structures even when thioflavin T, a common amyloid fibril
identifier, could not (Rahimi et al. 2009) (Fig. 3d). Aptamers
thus provide a hopeful approach to identifying or targeting
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amyloid proteins. To date, however, despite the potentials of
RNA aptamers, these molecules have not yet been shown to
provide clinical benefit.

Part 3: Lipids

A recent assessment of lipid content of AD plaques in human
brain tissue revealed that lipids co-localize with cross-[3 fibrils
in amyloid plaques and differ in their organization and com-
position in the plaque core versus periphery (Kiskis et al.
2015). Lipid structures may therefore potentially trap early-
stage amyloidogenic proteins, increasing their local concen-
tration and promoting aggregation. Membranes may also in-
duce pre-fibril forms of amyloid to form pore structures, lead-
ing to dysregulation of metal ions and other small molecules,
and resulting in a host of downstream consequences for cell
homeostasis.

Lipid rafts and gangliosides

Although a number of lipid surfaces have been shown to affect
amyloid aggregation, lipid rafts have emerged as a key bind-
ing interface for AB340 and A342 (Kim et al. 2006; Wong
et al. 2009). Lipid rafts are heterogeneous collections of dy-
namic gangliosides, sphingolipids, and cholesterol molecules
which laterally associate and are detergent-resistant (Simons
and Ikonen 1997). These membranes are involved in cellular
import/export and signal transduction, including neurotrans-
mission (Colin et al. 2016). The ganglioside and cholesterol
composition of lipid rafts has been shown to affect the oligo-
merization of Af342 (Kim et al. 2006), while ganglioside-
enriched brain lipid rafts have been shown to accelerate
AP40 fibril assembly, alter fibril morphology, and increase
neurotoxicity (Matsuzaki et al. 2010; Okada et al. 2008).
During binding, the soluble AP peptide is converted into a
helical fold (Fletcher and Keire 1997; Shao et al. 1999) which,
upon reaching a critical concentration, is then able to convert
to a [3-sheet conformation (Matsuzaki 2007). Similar aggre-
gation pathways have been observed in I[APP (Wakabayashi
and Matsuzaki 2009) and «-synuclein (Di Scala et al. 2016;
Rao et al. 2010), suggesting a generic scaffold-like interface
for multiple amyloid proteins. Using the dye
diethylaminocoumarin, Ikeda and Matsuzaki showed that
binding of A40 to gangliosides involves both hydrophobic
and hydrogen-bonding interactions (Ikeda and Matsuzaki
2008), by contrast with the electrostatic interactions which
dominate RNA binding and are also involved in GAG bind-
ing. The authors of this study map the interaction using an
A29-40 fragment, which localizes the ganglioside-binding
interface specifically to the C-terminal hydrophobic region of
the full-length protein (Fig. 1).
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Unlike other effectors of amyloid aggregation, membranes
may not only induce cross-{3 aggregates, but may also facili-
tate novel amyloid structures, including pores (Arispe et al.
1993). Indeed, pore-like structures comprised of protofibrils
have been observed in postmortem AD patients (Inoue 2008).
Pore formation is particularly dangerous as it causes increased
cellular toxicity, increased passive transport of small mole-
cules, and ultimately cell death (Butterfield and Lashuel
2010). AP42 is slightly more hydrophobic than A{340, due
to its extended C-terminus, and, since hydrophobicity is an
important property for membrane interactions, differences be-
tween the two peptide forms have been assessed. Sera-Batiste
and co-workers systematically monitored the aggregation
properties of AB40 and A{342 in the presence of membranes
of various composition over time using gel filtration. The
authors observed that APB42 reconstituted in
dodecylphosphocholine micelles produced homogenous olig-
omers which were able to form (3-barrel pore structures, while
AB40 reconstituted under the same conditions formed fibrils
which lacked pore-like properties (Serra-Batiste et al. 2016).
Computational modeling of A{342-lipid pores proposed that
these structures could be composed of several hexameric
units, which associate into a stable 36-stranded (3-barrel with
a diameter large enough to accommodate metal ions (Shafrir
et al. 2010). These results suggest differences in the hydro-
phobicity of AP peptide sequences lead to differences in their
behavior with membranes, which may reflect the more toxic
nature of AP42 compared with A340. Membranes, in partic-
ular gangliosides, may play a critical role in A3 fibril assem-
bly and toxicity. Their co-localization in A3 plaques suggests
that the composition and properties of lipids cannot be ignored
as a contributing factor to AD.

Lipids may also be intimately involved with reactive oxy-
gen species (ROS) generation, particularly as a source of ox-
ygen radicals. ROS damage has been linked to membrane
binding by both A342 oligomers and fibrils in cell culture
(Cenini et al. 2010), and may also occur by dysregulation of
metal ions, potentially as a result of lipid-mediated A342 pore
formation (Perry et al. 2002). Additional implications of ROS
will be discussed in “Part 4”.

Cholesterol and apolipoprotein E

Another key component of lipid rafts is cholesterol, a mole-
cule which has gamered significant attention for its role in
heart disease. High cholesterol diets have also been implicated
in causing AD-like behavioral and pathological symptoms in
laboratory animals, including increased A(342 production
(Ullrich et al. 2010). Both cholesterol and apolipoprotein E
(discussed below) have been observed in the core of AD
plaques (but not diffuse plaques) of transgenic mice, suggest-
ing a direct interaction with A3 fibrils (Burns et al. 2003).
While cholesterol is not required for A oligomerization
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(Kim et al. 2006), it has been shown to accelerate binding of
the AR5-16 fragment to gangliosides, by stabilizing an opti-
mal ganglioside dimer conformation (Fantini et al. 2013).
Additionally, cholesterol has been shown to bind directly to
fragments of the A3 peptide through C-terminal residues V24
and K28 based on in vitro and in silico measurements (Di
Scala et al. 2013), highlighting the importance of both charge
and hydrophobicity. A link between cholesterol and copper
ions as AD risk factors has been proposed based on patient
studies, although their combined role in affecting disease pro-
gression has not been fully determined (Morris et al. 2006).

Apolipoproteins are involved in cholesterol transport
through the nervous system by binding to cell surface recep-
tors including proteoglycans. Perhaps the most well-studied
apolipoprotein in the context of AD is the E class (ApoE),
which has been shown to affect A3 production, deposition,
and clearance in sporadic Alzheimer’s disease and is also
found in senile plaques. In APP transgenic mice, knockout
of ApoE prevented amyloid deposition; instead, the animals
formed only diffuse plaques (Holtzman et al. 2000). Alleles of
ApoE, containing different residues at positions 112 and 158
(2: C112/C158, 3: C112/R158, and 4 R112/R158) regulate
the binding preferences for high- ( 2) versus low- ( 4) density
lipoproteins (Puglielli et al. 2003), which affects membrane
composition. Recently, it was shown that ApoE alleles directly
stimulate A3 production, with 4> 3> 2 (Huang etal. 2017).
The allelic variation of the isoforms therefore is closely linked
to AD, with 40% of individuals with AD expressing the 4
isoform (Farrer et al. 1997). Direct binding between ApoE and
the A3 peptide has been suggested (Carter 2005; Strittmatter
et al. 1993); however, Verghese and colleagues have utilized
in vitro and in vivo measurements in cerebrospinal and inter-
stitial fluid analyzed by gel filtration to show minimal binding
between ApoE and soluble A340/42 (Verghese et al. 2013).
Interestingly, ApoE processing has been linked recently to
iron metabolism, indicating a role for this component in the
maintenance of brain metal homeostasis, with potential impli-
cations for AD, as described in “Part 4” (Belaidi and Bush
2016). Thus, ApoE and cholesterol are closely linked, affect-
ing lipid membrane composition and ultimately A3 aggrega-
tion and toxicity. Research continues into the nuances of this
pathway and its implications in cognitive decline.

Lipids as therapeutics

Statins, which reduce the risk of cardiovascular disease by alter-
ing cholesterol levels, have been shown to lower the risk of
developing AD (Jick et al. 2000) (the most highly-prescribed
statin is shown in Fig. 3e). To date, studies assessing the role of
statins on AD have been hampered by generalizations between
various statins which vary in blood—brain barrier penetration and
thus potentially their effectiveness, as well as differences in dos-
age and duration between experiments (Shepardson et al. 2011).

A longitudinal study measuring rates of decline in cognition in
adults with normal cognition and mild cognitive impairment who
used statins (with no particular type of statin specified) found
reduced cognitive decline over time in adults initially with nor-
mal cognition, but no effect on patients exhibiting mild cognitive
decline (Steenland et al. 2013), relative to statin non-users. Thus,
statins may prove to be a protective factor for AD. However,
much more data are required to determine the duration statins
must be administered to show a protective effect and whether this
effect is universal. The natural product omega-3-fatty acids
which contain doxcosahexaenoic acid (DHA) (Fig. 3f) affect
lipid raft composition, size, and stability, resulting in changes in
membrane permeability and receptor binding (Colin et al. 2016).
A recent review highlights that DHA, while not effective in
studies comprised of the general population, is a particularly
potent therapeutic for carriers of the ApoE ¢4 isoform (Yassine
et al. 2017). This finding represents one of the first potential
treatments for carriers of the most dangerous ApoE allele.
DHA can be administered with relatively few side effects, mak-
ing this an attractive, potentially long-term, strategy for older
individuals who do not yet show symptoms of AD.

Part 4: Metal ions

One prolific area of research on AD is the binding of metal ions
to A, inspired by the finding that various metals are found
concentrated in senile plaques, relative to other tissues (Faller
2009; Maynard et al. 2005; Tougu et al. 2011). Levels of zinc,
iron, and copper ions in the brain, although normally tightly
regulated, fluctuate substantially upon neuronal activation,
resulting in pools of ions that may not be cleared as readily in
aged individuals (Faller 2009). These ions may also play a role in
ROS generation, which may occur through metal ion reduction
(Huang et al. 1999). Direct binding of AB40 to Cu®* and Zn**
has been observed, implicating the peptide as an aberrant metal
chelator or indirectly in causing lipid-based pore formation which
alters the brain metal ion balance. Other metal ions have also
been investigated in connection with AD including Ca**,
Mg**, Mn**, and AP**. However, limited studies of these ions
to date have pointed to roles as upstream or indirect effectors of
amyloid aggregation (Hare et al. 2016; Khachaturian 1987; Li
et al. 2013). The latter set of ions will not be addressed further
here. Instead, we focus on three known effectors of AD which
are found elevated in amyloid plaques: Cu®*, Zn**, and Fe**.

Copper ions

Perhaps the most extensively studied and well-characterized met-
al ion bound by A is copper. This interaction depends on a
number of factors, including the pH of the amyloid environment,
concentration of metal ions relative to A3, and the oxidation state
of the metal. AR40-copper binding in both the 2* and 1*
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oxidation states has been pinpointed principally to the three his-
tidine residues at positions 6, 13, and 14 (Fig. 1). Copper ion
binding occurs more readily at mildly acidic pH resulting in
characteristic insoluble plaques, while at physiological pH, solu-
ble APB40 and A[342 aggregates have been observed (Atwood
etal. 1998; Mold et al. 2013). In a series of elegant studies using
electron paramagnetic resonance, the binding site of Cu®* was
mapped principally to H6 and either H13 or H14, with the inter-
action region alternating on successive fibril strands of A {340
(Gunderson et al. 2012). Additional characterization showed that
Cu** does not alter the fibril architecture or aggregation pathway
(Karr et al. 2005; Karr et al. 2004), and could bind oligomeric
(Karr and Szalai 2008; Sarell et al. 2010) or monomeric
(Pedersen et al. 2015) A340. One consequence of this binding
arrangement is its ability to induce fibril—fibril association (cross-
linking), as observed in aggregation experiments with
substoichiometric Cu®* at low pH (Karr and Szalai 2008; Sarell
et al. 2010). In our own work, we have observed a Cu2+—speciﬁc
effect on the aggregation rate of Af340 under low (pH 6.4), but
not neutral (pH 7.4), conditions (Fig. 4a, b), in agreement with
the importance of histidine protonation in this interaction.
Interestingly, the GAG heparin has also been shown to bind
Cu?* ions, causing a change in heparin chain conformation,
which may have additional implications for cooperativity or
competition with the A3 peptide (Rudd et al. 2008). The binding
site for Cu'* fons has also been characterized in A 340 and forms
a linear binding arrangement involving H13 and H14 with sim-
ilar stoichiometry to Cu”" ions (Shearer and Szalai 2008).

The interaction of copper ions with A340 and Af342 has
also been studied in regard to ROS generation, particularly
with oligomeric and fibrillar A species. However, whether
Cu?* binding to AP species increases or decreases ROS is
debated. Mayes and co-workers have suggested that A(342
fibrils can degrade peroxide in a Cu?*-binding dependent
manner, with the highest ROS generation at a 1:1 ratio of
AB:Cu* (i.e. saturated binding) (Mayes et al. 2014). In con-
trast, Pedersen and colleagues demonstrated that ROS gener-
ated from oxygen and ascorbate was reduced in the presence
of fibril forms of AB40 and x-synuclein compared with Cu**
alone (Pedersen et al. 2016). This finding suggests that ROS
production is initiated by free metal ions rather than aggrega-
tion of the A3 peptide, and that ROS in AD plaques results
from the prevalence of free, rather than bound, metal ions.
Regardless of the initiating species, ROS generation is strong-
ly correlated with AD, and oxidative damage is a major factor
in disease progression (Huang et al. 2016; Perry et al. 2002).

Zinc ions
Zn** jons are also elevated in AD amyloid plaques, and have
been shown both to accelerate (Bush et al. 1994) or retard

(Abelein et al. 2015; Sarell et al. 2010) A340 aggregation at
physiological pH in vitro, depending on the conditions used.
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Under similar conditions to those used by Abelein, we observed
an increase in the lag time of A (340 aggregation with increasing
concentrations of Zn”* ions (Fig. 4c). Similarly to Cu®*''*, the
Zn** binding site involves residues H13 and H14, and also the N-
terminus of the protein, although binding does not appear to be
mediated by histidine protonation as was observed for Cu?*'*
(Yang et al. 2000). A detailed characterization of Zn”* binding
site by Rezaei-Ghaleh and co-workers by nuclear magnetic res-
onance (NMR) showed that other regions of the A340 peptide,
particularly residues D23-G29 (Fig. 1), may change conforma-
tion in response to Zn>* ions, indicating that the binding interac-
tion has global implications for A3 structure (Rezaei-Ghaleh
et al. 2011). Additionally, Zn** has been shown to promote
nucleic acid association with AP342, with particular importance
for histidine residues 6 and 13 (Khmeleva et al. 2016). Zn”>* has
also been shown to play a protective role in ROS generation, by
competing for AB40/42 fibril binding with Cu** (low M/high
pM for Cu?* vs. low- to mid-uM for Zn** dissociation constants)
(Faller and Hureau 2009). In the presence of both ions, ROS
generation was shown to be reduced relative to Cu®* alone
(Mayes et al. 2014), suggesting, in agreement with other results
(Cuajungco et al. 2000), that Zn** binding limits ROS
generation.

Iron ions

Brain Fe** levels have been shown to be elevated in autopsy
studies of AD patients (Loef and Walach 2012) and are correlated
with oxidative damage (Casadesus et al. 2004), which Fe**",
like Cu®""'*, may promote (Wang and Wang 2016). The addition
ofa 10-fold molar excess of Fe** has been reported to alter A 342
fibril morphology, resulting in shorter, curved fibrils with elevat-
ed toxicity (Liu et al. 2011). In a study of the binding of 20-fold
excess of various metal ions to the A340 peptide, Clements and
co-workers demonstrated that Zn>* and Cu”* binding were stron-
ger than Fe*™ and AP**, which were unable to displace Zn**
(Clements et al. 1996). Substoichiometric amounts of Fe** did
not alter the rate of A340 aggregation in our Kinetics survey,
arguing against a significant role under the conditions tested
(Fig. 4d). As mentioned previously, iron levels are directly cor-
related with the ApoE isoform. These findings indicate that indi-
viduals with the ApoE ¢4 allele contain elevated levels of the iron
storage protein ferritin in the cerebrospinal fluid (Ayton et al.
2015), which cause elevated brain-iron levels in AD.
Therefore, while Fe>*** jons play a role in amyloid pathology,
they may do so indirectly in their role as a redox-active and
pathway-associated metal ion, rather than as a direct binding
partner of the A3 peptide.

Metal ion chelators as amyloid therapeutics

A number of metal ion chelators have been investigated as
possible therapeutics, with a focus on altering the soluble
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cellular pool of metal ions. Iodochlorhydroxyquin (clioquinol)
(Fig. 3g), a chelator of copper and zinc ions, was able to
reduce plaque burden and memory loss in animal models
(Cherny et al. 2001) and in early-stage human clinical trials
(Regland et al. 2001). In pilot phase 2 clinical trials, treatment
with clioquinol was significant in reducing memory loss in
patients with severe dementia, and was shown to reduce plas-
ma A (42 levels while increasing plasma Zn?* levels (Ritchie
etal. 2003). A related chelator, PBT2 (Fig. 3h), was developed
to be more tolerant in higher doses than clioquinol, and has
undergone phase Il clinical trials. In an initial 12-week study, a
250-mg dose was more effective at preventing cognitive de-
cline than a 50-mg dose (Faux et al. 2010). However, in a
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pH 6.5, 25 uM A340 with 15 uM ZnCl, at pH 7.5, 25 uM A340 with
15 uM FeCl; at pH 7.5

longer 52-week trial, PBT2 did not reduce plaque burden or
improve cognitive function to a statistically significant extent.
Recently, Caballero and co-workers have designed peptide
fragments containing one to two histidine residues which
showed higher affinity for Cu®* ions than the AB40 peptide,
and also showed reduced amyloid toxicity and reduced
copper-generated ROS (Caballero et al. 2016) (Fig. 31).
While these fragments are now only at a preliminary test
phase, they may prove to be useful therapeutic scaffolds for
future metal ion chelators. There has also been an increasing
focus in patient studies on the role of dietary metal ions in AD.
An overview of published clinical trials and cross-section
studies (Loef and Walach 2012) concluded that most trials to
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redox cycling
generates ROS

Fig. 5 Cross-interactions of plaque components. Plaque components
colored as in Fig. 1 (where applicable). Lines connecting species
describe interactions. Although all these species are found in amyloid

date have produced inconclusive results, primarily due to the
study duration or inability to control for dietary or lifestyle
variables. As mentioned previously, a plausible link between
copper ions and high cholesterol has emerged, but specific
details of the interaction must be elucidated further (Morris
et al. 2006). Taken together, these results indicate that altered
metal ion chelation and/or consumption, while important for
AD pathology, is not alone sufficiently potent to significantly
inhibit AD, and must be considered alongside other factors.

Conclusions: commonalities, competition,
and cross-coordination

Plaques are complicated assortments of aggregated protein
and other co-effectors of the aggregation process (Fig. 2).
The balance of such molecules in the cellular environment,
under both healthy and disease conditions, may alter the A3
aggregation rate and ability to interact with additional extra-
cellular factors. Figure 1 shows the proposed binding sites on
A[340/42 for a number of the molecules detailed in this re-
view. Although a large number of binding partners may com-
pete for the histidine residues in the N-terminal region of
AP40/42, there are other binding sites distributed throughout
the sequence, suggesting that the A3 peptide may interact
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plaques (fibrils), their interactions with earlier stage Af3 is also possible.
A schematic of the A3 peptide aggregation pathway is shown at the
bottom right

with multiple binding partners, exhibiting various charges or
lack thereof, simultaneously or in succession. Additionally,
due to differences between the aggregation propensities and
intermediate states sampled in A 340 versus A (342 (Bitan et al.
2003; Meisl et al. 2014), preferences toward binding partners
may differ between A3 forms. This complicated interplay
may be responsible for the variation observed in fibril mor-
phology (Annamalai et al. 2016; Tycko 2015) and rate of
disease progression, which can fluctuate in sporadic AD from
months to decades (Komarova and Thalhauser 2011;
Thalhauser and Komarova 2012).

To date, no therapeutic has been identified which is able to
fully mitigate AD. Perhaps this is because many drugs to date
(Fig. 3) have targeted a single extracellular factor, without
considering the competition between these molecules, or the
fact that such competition may vary greatly between individ-
uals. Future therapeutic strategies must consider the complex-
ity of amyloid aggregation, particularly how the delicate bal-
ance of interactions in the brain can not only affect A but
how these interactions can also affect one another. One key
point of this analysis is how genetic factors, such as ApoE
allele, or environmental factors, such as metal ion concentra-
tion or cholesterol consumption, alter the production or inter-
action of the AP peptide with other effectors of amyloid ag-
gregation. Figure 5 presents a simplified view of some of these
cross-interactions within the complexity of the cellular
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environment. Clearly, A3 aggregation is not a simple, linear
process. Instead, there is a multitude of factors which mitigate
amyloid structure, toxicity, and clearance. Only when these
cross-coordination events are considered can the intricacies
of the amyloid aggregation cascade be understood and prop-
erly targeted.
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