1,163 research outputs found

    A “Push and Slide” Mechanism Allows Sequence-Insensitive Translocation of Secretory Proteins by the SecA ATPase

    Get PDF
    SummaryIn bacteria, most secretory proteins are translocated across the plasma membrane by the interplay of the SecA ATPase and the SecY channel. How SecA moves a broad range of polypeptide substrates is only poorly understood. Here we show that SecA moves polypeptides through the SecY channel by a “push and slide” mechanism. In its ATP-bound state, SecA interacts through a two-helix finger with a subset of amino acids in a substrate, pushing them into the channel. A polypeptide can also passively slide back and forth when SecA is in the predominant ADP-bound state or when SecA encounters a poorly interacting amino acid in its ATP-bound state. SecA performs multiple rounds of ATP hydrolysis before dissociating from SecY. The proposed push and slide mechanism is supported by a mathematical model and explains how SecA allows translocation of a wide range of polypeptides. This mechanism may also apply to hexameric polypeptide-translocating ATPases

    Decatransin, a novel natural product inhibiting protein translocation at the Sec61/SecY translocon

    Get PDF
    A new cyclic decadepsipeptide was isolated from Chaetosphaeria tulasneorum with potent bioactivity on mammalian and yeast cells. Chemogenomic profiling in S. cerevisiae indicated that the Sec61 translocon, the machinery for protein translocation and membrane insertion at the endoplasmic reticulum, is the target. The profiles were similar to those of cyclic heptadepsipeptides of a distinct chemotype (HUN-7293/cotransin) that had previously been shown to inhibit cotranslational translocation at the mammalian Sec61 translocon. Unbiased, genome-wide mutagenesis followed by full-genome sequencing in both fungal and mammalian cells identified dominant mutations in Sec61p/Sec61α1 to confer resistance. Most, but not all, of these mutations affected inhibition by both chemotypes, despite an absence of structural similarity. Biochemical analysis confirmed inhibition of protein translocation into the endoplasmic reticulum of both co- and posttranslationally translocated substrates by both chemotypes, demonstrating a mechanism independent of a translating ribosome. Most interestingly, both chemotypes were found to also inhibit SecYEG, the bacterial Sec61 homolog. We suggest "decatransin" as the name for this novel decadepsipeptide translocation inhibitor

    Neuropeptide S receptor gene - converging evidence for a role in panic disorder

    Get PDF
    Animal studies have suggested neuropeptide S (NPS) and its receptor (NPSR) to be involved in the pathogenesis of anxiety-related behavior. In this study, a multilevel approach was applied to further elucidate the role of NPS in the etiology of human anxiety. The functional NPSR A/T (Asn¹⁰⁷Ile) variant (rs324981) was investigated for association with (1) panic disorder with and without agoraphobia in two large, independent case-control studies, (2) dimensional anxiety traits, (3) autonomic arousal level during a behavioral avoidance test and (4) brain activation correlates of anxiety-related emotional processing in panic disorder. The more active NPSR rs324981 T allele was found to be associated with panic disorder in the female subgroup of patients in both samples as well as in a meta-analytic approach. The T risk allele was further related to elevated anxiety sensitivity, increased heart rate and higher symptom reports during a behavioral avoidance test as well as decreased activity in the dorsolateral prefrontal, lateral orbitofrontal and anterior cingulate cortex during processing of fearful faces in patients with panic disorder. The present results provide converging evidence for a female-dominant role of NPSR gene variation in panic disorder potentially through heightened autonomic arousal and distorted processing of anxiety-relevant emotional stimuli

    On Neutrino Oscillations and Time-Energy Uncertainty Relation

    Full text link
    We consider neutrino oscillations as non stationary phenomenon based on Schrodinger evolution equation and mixed neutrino states with definite flavor. We demonstrate that for such states invariance under translations in time does not take place. We show that time-energy uncertainty relation plays a crucial role in neutrino oscillations. We compare neutrino oscillations with K0Kˉ0K^{0}\leftrightarrows\bar K^{0}, Bd0Bˉd0B_{d}^{0}\leftrightarrows\bar B_{d}^{0} etc oscillations

    Phosphodiesterase-5 inhibitors have distinct effects on the hemodynamics of the liver

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The NO - cGMP system plays a key role in the regulation of sinusoidal tonus and liver blood flow with phosphodiesterase-5 (PDE-5) terminating the dilatory action of cGMP. We, therefore, investigated the effects of PDE-5 inhibitors on hepatic and systemic hemodynamics in rats.</p> <p>Methods</p> <p>Hemodynamic parameters were monitored for 60 min. after intravenous injection of sildenafil and vardenafil [1, 10 and 100 μg/kg (sil1, sil10, sil100, var1, var10, var100)] in anesthetized rats.</p> <p>Results</p> <p>Cardiac output and heart rate remained constant. After a short dip, mean arterial blood pressure again increased. Systemic vascular resistance transiently decreased slightly. Changes in hepatic hemodynamic parameters started after few minutes and continued for at least 60 min. Portal (var10 -31%, sil10 -34%) and hepatic arterial resistance (var10 -30%, sil10 -32%) decreased significantly (p < 0.05). At the same time portal venous (var10 +29%, sil10 +24%), hepatic arterial (var10 +34%, sil10 +48%), and hepatic parenchymal blood flow (var10 +15%, sil10 +15%) increased significantly (p < 0.05). The fractional liver blood flow (total liver flow/cardiac output) increased significantly (var10 26%, sil10 23%). Portal pressure remained constant or tended to decrease. 10 μg/kg was the most effective dose for both PDE-5 inhibitors.</p> <p>Conclusion</p> <p>Low doses of phosphodiesterase-5 inhibitors have distinct effects on hepatic hemodynamic parameters. Their therapeutic use in portal hypertension should therefore be evaluated.</p

    Guidelines and Recommendations on Yeast Cell Death Nomenclature

    Get PDF
    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research

    Search for a singly produced third-generation scalar leptoquark decaying to a tau lepton and a bottom quark in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for a singly produced third-generation scalar leptoquark decaying to a tau lepton and a bottom quark. Associated production of a leptoquark and a tau lepton is considered, leading to a final state with a bottom quark and two tau leptons. The search uses proton-proton collision data at a center-of-mass energy of 13 TeV recorded with the CMS detector, corresponding to an integrated luminosity of 35.9 fb(-1). Upper limits are set at 95% confidence level on the production cross section of the third-generation scalar leptoquarks as a function of their mass. From a comparison of the results with the theoretical predictions, a third-generation scalar leptoquark decaying to a tau lepton and a bottom quark, assuming unit Yukawa coupling (lambda), is excluded for masses below 740 GeV. Limits are also set on lambda of the hypothesized leptoquark as a function of its mass. Above lambda = 1.4, this result provides the best upper limit on the mass of a third-generation scalar leptoquark decaying to a tau lepton and a bottom quark.Peer reviewe

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
    corecore