833 research outputs found

    Nonlinear Zeeman Effects in the Cavity-Enhanced Emission of Polarised Photons

    Full text link
    We theoretically and experimentally investigate nonlinear Zeeman effects within a polarised single-photon source that uses a single 87Rb atom strongly coupled to a high finesse optical cavity. The breakdown of the atomic hyperfine structure in the D2 transition manifold for intermediate strength magnetic fields is shown to result in asymmetric and, ultimately, inhibited operation of the polarised atom-photon interface. The coherence of the system is considered using Hong-Ou-Mandel interference of the emitted photons. This informs the next steps to be taken and the modelling of future implementations, based on feasible cavity designs operated in regimes minimising nonlinear Zeeman effects, is presented and shown to provide improved performance.Comment: 12 pages, 8 figure

    Polarisation oscillations in birefringent emitter-cavity systems

    Full text link
    We present the effects of resonator birefringence on the cavity-enhanced interfacing of quantum states of light and matter, including the first observation of single photons with a time-dependent polarisation state that evolves within their coherence time. A theoretical model is introduced and experimentally verified by the modified polarisation of temporally-long single photons emitted from a 87^{87}Rb atom coupled to a high-finesse optical cavity by a vacuum-stimulated Raman adiabatic passage (V-STIRAP) process. Further theoretical investigation shows how a change in cavity birefringence can both impact the atom-cavity coupling and engender starkly different polarisation behaviour in the emitted photons. With polarisation a key resource for encoding quantum states of light and modern micron-scale cavities particularly prone to birefringence, the consideration of these effects is vital to the faithful realisation of efficient and coherent emitter-photon interfaces for distributed quantum networking and communications.Comment: 9 pages, 5 figures including Supplemental Materia

    Photonic qubits, qutrits and ququads accurately prepared and delivered on demand

    Full text link
    Reliable encoding of information in quantum systems is crucial to all approaches to quantum information processing or communication. This applies in particular to photons used in linear optics quantum computing (LOQC), which is scalable provided a deterministic single-photon emission and preparation is available. Here, we show that narrowband photons deterministically emitted from an atom-cavity system fulfill these requirements. Within their 500 ns coherence time, we demonstrate a subdivision into d time bins of various amplitudes and phases, which we use for encoding arbitrary qu-d-its. The latter is done deterministically with a fidelity >95% for qubits, verified using a newly developed time-resolved quantum-homodyne method.Comment: 5 pages, 4 figure

    Photonic Quantum Logic with Narrowband Light from Single Atoms

    Get PDF
    Increasing control of single photons enables new applications of photonic quantum-enhanced technology and further experimental exploration of fundamental quantum phenomena. Here, we demonstrate quantum logic using narrow linewidth photons that are produced under nearly perfect quantum control from a single ^87Rb atom strongly coupled to a high-finesse cavity. We use a controlled- NOT gate integrated into a photonic chip to entangle these photons, and we observe non-classical correlations between events separated by periods exceeding the travel time across the chip by three orders of magnitude. This enables quantum technology that will use the properties of both narrowband single photon sources and integrated quantum photonics, such as networked quantum computing, narrow linewidth quantum enhanced sensing and atomic memories.Comment: 5 pates, 3 figure

    How to administer an antidote to Schrodinger's cat

    Get PDF
    In his 1935 Gedankenexperiment, Erwin Schrödinger imagined a box with a cat and a poisonous substance which has a 50% probability of being released, based on the decay of a radioactive atom. As such, the life of the cat and the state of the poison become entangled, and the fate of the cat is determined upon opening the box. We present an experimental technique that keeps the cat alive on any account. This method relies on the time-resolved Hong-Ou-Mandel effect: two long, identical photons impinging on a beam splitter always bunch in either of the outputs. Interpreting the first photon detection as the state of the poison, the second photon is identified as the state of the cat. Even after the collapse of the first photon's state, we show their fates are intertwined through quantum interference. We demonstrate this by a sudden phase change between the inputs, administered conditionally on the outcome of the first detection, which steers the second photon to a pre-defined output and ensures that the cat is always observed alive

    Multimode interferometry for entangling atoms in quantum networks

    Get PDF
    © 2019 IOP Publishing Ltd. We bring together a cavity-enhanced light-matter interface with a multimode interferometer (MMI) integrated onto a photonic chip and demonstrate the potential of such hybrid systems to tailor distributed entanglement in a quantum network. The MMI is operated with pairs of narrowband photons produced a priori deterministically from a single 87Rb atom strongly coupled to a high-finesse optical cavity. Non-classical coincidences between photon detection events show no loss of coherence when interfering pairs of these photons through the MMI in comparison to the two-photon visibility directly measured using Hong-Ou-Mandel interference on a beam splitter. This demonstrates the ability of integrated multimode circuits to mediate the entanglement of remote stationary nodes in a quantum network interlinked by photonic qubits

    Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management

    Get PDF
    Even at low-density lipoprotein cholesterol (LDL-C) goal, patients with cardiometabolic abnormalities remain at high risk of cardiovascular events. This paper aims (i) to critically appraise evidence for elevated levels of triglyceride-rich lipoproteins (TRLs) and low levels of high-density lipoprotein cholesterol (HDL-C) as cardiovascular risk factors, and (ii) to advise on therapeutic strategies for management. Current evidence supports a causal association between elevated TRL and their remnants, low HDL-C, and cardiovascular risk. This interpretation is based on mechanistic and genetic studies for TRL and remnants, together with the epidemiological data suggestive of the association for circulating triglycerides and cardiovascular disease. For HDL, epidemiological, mechanistic, and clinical intervention data are consistent with the view that low HDL-C contributes to elevated cardiovascular risk; genetic evidence is unclear however, potentially reflecting the complexity of HDL metabolism. The Panel believes that therapeutic targeting of elevated triglycerides (≥1.7 mmol/L or 150 mg/dL), a marker of TRL and their remnants, and/or low HDL-C (<1.0 mmol/L or 40 mg/dL) may provide further benefit. The first step should be lifestyle interventions together with consideration of compliance with pharmacotherapy and secondary causes of dyslipidaemia. If inadequately corrected, adding niacin or a fibrate, or intensifying LDL-C lowering therapy may be considered. Treatment decisions regarding statin combination therapy should take into account relevant safety concerns, i.e. the risk of elevation of blood glucose, uric acid or liver enzymes with niacin, and myopathy, increased serum creatinine and cholelithiasis with fibrates. These recommendations will facilitate reduction in the substantial cardiovascular risk that persists in patients with cardiometabolic abnormalities at LDL-C goal
    corecore